Generating function of monodromy symplectomorphism for $2\times 2$ Fuchsian systems and its WKB expansion

. We study the WKB expansion of 2 × 2 system of linear differential equations with four fuchsian singularities. The main focus is on the generating function of the monodromy symplectomorphism which, according to a recent paper [10] is closely related to the Jimbo-Miwa tau-function. We compute the first three terms of the WKB expansion of the generating function and establish the link to the Bergman tau-function.

[1]  Fabrizio Del Monte,et al.  Isomonodromic Tau Functions on a Torus as Fredholm Determinants, and Charged Partitions , 2020, Communications in Mathematical Physics.

[2]  P. Gavrylenko,et al.  Monodromy dependence and symplectic geometry of isomonodromic tau functions on the torus , 2022, 2211.01139.

[3]  P. Gavrylenko,et al.  Quantum Spectral Problems and Isomonodromic Deformations , 2021, Communications in Mathematical Physics.

[4]  D. Masoero,et al.  On the monodromy of the deformed cubic oscillator , 2020, Mathematische Annalen.

[5]  E. Pomoni,et al.  From Quantum Curves to Topological String Partition Functions , 2018, Communications in Mathematical Physics.

[6]  M. Bertola,et al.  WKB expansion for a Yang–Yang generating function and the Bergman tau function , 2021 .

[7]  Dmitry Korotkin,et al.  Tau-Functions and Monodromy Symplectomorphisms , 2019, Communications in Mathematical Physics.

[8]  N. Nekrasov,et al.  Riemann-Hilbert correspondence and blown up surface defects , 2020, Journal of High Energy Physics.

[9]  P. Gavrylenko,et al.  Irregular conformal blocks, Painlevé III and the blow-up equations , 2020, Journal of High Energy Physics.

[10]  Kohei Iwaki 2-Parameter τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-Function for the First Painlevé Equ , 2019, Communications in Mathematical Physics.

[11]  D. Korotkin Bergman Tau-Function: From Einstein Equations and Dubrovin-Frobenius Manifolds to Geometry of Moduli Spaces , 2018, Integrable Systems and Algebraic Geometry.

[12]  Dylan G. L. Allegretti,et al.  The monodromy of meromorphic projective structures , 2018, Transactions of the American Mathematical Society.

[13]  M. Bertola,et al.  Extended Goldman symplectic structure in Fock-Goncharov coordinates. , 2019, 1910.06744.

[14]  M. Bertola,et al.  Spaces of Abelian Differentials and Hitchin’s Spectral Covers , 2018, International Mathematics Research Notices.

[15]  Dylan G. L. Allegretti Voros symbols as cluster coordinates , 2018, Journal of Topology.

[16]  T. Bridgeland The author is very grateful to Kohei Iwaki , 2017 .

[17]  O. Lisovyy,et al.  Monodromy dependence and connection formulae for isomonodromic tau functions , 2016, 1604.03082.

[18]  O. Lisovyy,et al.  On Painlevé/gauge theory correspondence , 2016, 1612.06235.

[19]  O. Lisovyy,et al.  Fredholm Determinant and Nekrasov Sum Representations of Isomonodromic Tau Functions , 2016, 1608.00958.

[20]  A. Its,et al.  Connection Problem for the Tau-Function of the Sine-Gordon Reduction of Painlevé-III Equation via the Riemann-Hilbert Approach , 2015, 1506.07485.

[21]  O. Lisovyy,et al.  Connection Problem for the Sine-Gordon/Painlevé III Tau Function and Irregular Conformal Blocks , 2014, 1403.1235.

[22]  O. Lisovyy,et al.  Isomonodromic Tau-Functions from Liouville Conformal Blocks , 2014, 1401.6104.

[23]  O. Lisovyy,et al.  Painlevé VI connection problem and monodromy of c = 1 conformal blocks , 2013, 1308.4092.

[24]  D. Korotkin,et al.  Baker–Akhiezer Spinor Kernel and Tau-functions on Moduli Spaces of Meromorphic Differentials , 2013, 1307.0481.

[25]  I. Smith,et al.  Quadratic differentials as stability conditions , 2013, Publications mathématiques de l'IHÉS.

[26]  D. Korotkin,et al.  Tau function and the Prym class , 2013 .

[27]  D.Korotkin,et al.  Tau function and the Prym class , 2013, 1302.0577.

[28]  O. Lisovyy,et al.  Conformal field theory of Painlevé VI , 2012, 1207.0787.

[29]  G. Moore,et al.  Wall-crossing, Hitchin Systems, and the WKB Approximation , 2009, 0907.3987.

[30]  T. Kawai,et al.  Algebraic Analysis of Singular Perturbation Theory , 2005 .

[31]  A. Kokotov,et al.  Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray-Singer formula , 2004, math/0405042.

[32]  A. Goncharov,et al.  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[33]  D. Korotkin Solution of matrix Riemann-Hilbert problems with quasi-permutation monodromy matrices , 2003 .

[34]  Denis Bernard,et al.  Introduction to classical integrable systems , 2003 .

[35]  H. Samtleben,et al.  Quantization of Coset Space σ-Models Coupled to Two-Dimensional Gravity , 1996, hep-th/9607095.

[36]  A. Alekseev,et al.  The hyperbolic moduli space of flat connections and the isomorphism of symplectic multiplicity spaces , 1996, dg-ga/9603017.

[37]  H. Dillinger,et al.  R'esurgence de Voros et p'eriodes des courbes hyperelliptiques , 1993 .

[38]  W. Goldman The Symplectic Nature of Fundamental Groups of Surfaces , 1984 .

[39]  A. Voros The return of the quartic oscillator. The complex WKB method , 1983 .

[40]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[41]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[42]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .