A Tutorial on Latin Hypercube Design of Experiments

The growing power of computers enabled techniques created for design and analysis of simulations to be applied to a large spectrum of problems and to reach high level of acceptance among practitioners. Generally, when simulations are time consuming, a surrogate model replaces the computer code in further studies (e.g., optimization, sensitivity analysis, etc.). The first step for a successful surrogate modeling and statistical analysis is the planning of the input configuration that is used to exercise the simulation code. Among the strategies devised for computer experiments, Latin hypercube designs have become particularly popular. This paper provides a tutorial on Latin hypercube design of experiments, highlighting potential reasons of its widespread use. The discussion starts with the early developments in optimization of the point selection and goes all the way to the pitfalls of the indiscriminate use of Latin hypercube designs. Final thoughts are given on opportunities for future research. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[2]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[3]  Peter Ifju,et al.  Flexible-wing-based Micro Air Vehicles , 2002 .

[4]  M. Liefvendahl,et al.  A study on algorithms for optimization of Latin hypercubes , 2006 .

[5]  Timothy W. Simpson,et al.  Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come? , 2014 .

[6]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[7]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[8]  William Becker,et al.  A comparison of two sampling methods for global sensitivity analysis , 2012, Comput. Phys. Commun..

[9]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[10]  A. Sudjianto,et al.  An Efficient Algorithm for Constructing Optimal Design of Computer Experiments , 2005, DAC 2003.

[11]  Vassili Toropov,et al.  Design optimization of supersonic jet pumps using high fidelity flow analysis , 2012 .

[12]  Li Liu,et al.  A novel algorithm of maximin Latin hypercube design using successive local enumeration , 2012 .

[13]  Olivier Roustant,et al.  A Radial Scanning Statistic for Selecting Space-filling Designs in Computer Experiments , 2010 .

[14]  Dick den Hertog,et al.  Maximin Latin Hypercube Designs in Two Dimensions , 2007, Oper. Res..

[15]  G. Venter,et al.  An algorithm for fast optimal Latin hypercube design of experiments , 2010 .

[16]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[17]  Larsgunnar Nilsson,et al.  Estimation of process parameter variations in a pre-defined process window using a Latin hypercube method , 2008 .

[18]  Murray Smith,et al.  Neural Networks for Statistical Modeling , 1993 .

[19]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[20]  Dennis K. J. Lin,et al.  Construction of orthogonal Latin hypercube designs with flexible run sizes , 2010 .

[21]  Richard S. Crutchfield,et al.  Efficient Factorial Design and Analysis of Variance Illustrated in Psychological Experimentation , 1938 .

[22]  Jack P. C. Kleijnen,et al.  State-of-the-Art Review: A User's Guide to the Brave New World of Designing Simulation Experiments , 2005, INFORMS J. Comput..

[23]  David M. Steinberg,et al.  Comparison of designs for computer experiments , 2006 .

[24]  Dick den Hertog,et al.  Space-filling Latin hypercube designs for computer experiments , 2008 .

[25]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[26]  David C. Woods,et al.  Weighted space-filling designs , 2013, J. Simulation.

[27]  Xi Yang,et al.  Aerodynamic and heat transfer design optimization of internally cooling turbine blade based different surrogate models , 2011 .

[28]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[29]  William G. Cochran,et al.  The analysis of groups of experiments , 1938, The Journal of Agricultural Science.

[30]  Thomas W. Lucas,et al.  Efficient Nearly Orthogonal and Space-Filling Latin Hypercubes , 2007, Technometrics.

[31]  Philip Prescott,et al.  Orthogonal-column Latin hypercube designs with small samples , 2009, Comput. Stat. Data Anal..

[32]  Bertrand Iooss,et al.  Latin hypercube sampling with inequality constraints , 2009, 0909.0329.

[33]  Timothy W. Simpson,et al.  Metamodels for Computer-based Engineering Design: Survey and recommendations , 2001, Engineering with Computers.

[34]  Peter Winker,et al.  Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..

[35]  Stelios D. Georgiou,et al.  Supersaturated designs: A review of their construction and analysis , 2014 .

[36]  R. A. Fisher,et al.  Design of Experiments , 1936 .

[37]  F. Viana,et al.  Temperature-Based Optimization of Film Cooling in Gas Turbine Hot Gas Path Components , 2013 .

[38]  Christopher J. Marley,et al.  A comparison of design and model selection methods for supersaturated experiments , 2010, Comput. Stat. Data Anal..

[39]  Bernard Yannou,et al.  Metamodeling of Combined Discrete/Continuous Responses , 2001 .

[40]  Edna M. Fisher,et al.  Color Variation in the Coast Gopher Snake , 1935 .

[41]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[42]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[43]  Tom Dhaene,et al.  Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling , 2011, Eur. J. Oper. Res..

[44]  W. Matthew Carlyle,et al.  Constructing nearly orthogonal latin hypercubes for any nonsaturated run-variable combination , 2012, TOMC.

[45]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[46]  M. Browne,et al.  Probabilistic analysis of an uncemented total hip replacement. , 2009, Medical engineering & physics.

[47]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[48]  G. Rennen,et al.  Nested maximin Latin hypercube designs , 2009 .

[49]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[50]  Weichung Wang,et al.  Optimizing Latin hypercube designs by particle swarm , 2012, Statistics and Computing.

[51]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments , 2001 .

[52]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[53]  Runze Li,et al.  Uniform design for computer experiments and its optimal properties , 2006 .

[54]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[55]  U. Diwekar,et al.  Efficient sampling technique for optimization under uncertainty , 1997 .

[56]  Timothy W. Simpson,et al.  Sampling Strategies for Computer Experiments: Design and Analysis , 2001 .

[57]  Layne T. Watson,et al.  Efficient global optimization algorithm assisted by multiple surrogate techniques , 2012, Journal of Global Optimization.

[58]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[59]  I. Sobol Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[60]  Andrea Grosso,et al.  Finding maximin latin hypercube designs by Iterated Local Search heuristics , 2009, Eur. J. Oper. Res..

[61]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[62]  Slawomir Koziel,et al.  Surrogate-based modeling and optimization : applications in engineering , 2013 .

[63]  Jin Zhang,et al.  Methodology for determining the acceptability of system designs in uncertain environments , 2011, Eur. J. Oper. Res..

[64]  Russell R. Barton,et al.  A review on design, modeling and applications of computer experiments , 2006 .

[65]  Alexander D MacCalman,et al.  Flexible Space-Filling Designs for Complex System Simulations , 2013 .

[66]  Edwin R. van Dam,et al.  Bounds for Maximin Latin Hypercube Designs , 2007, Oper. Res..

[67]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[68]  Luc Pronzato,et al.  Design of computer experiments: space filling and beyond , 2011, Statistics and Computing.

[69]  Layne T. Watson,et al.  Pitfalls of using a single criterion for selecting experimental designs , 2008 .

[70]  R. Haftka,et al.  Reliability-based design optimization using probabilistic sufficiency factor , 2004 .

[71]  Michael S. Eldred,et al.  OVERVIEW OF MODERN DESIGN OF EXPERIMENTS METHODS FOR COMPUTATIONAL SIMULATIONS , 2003 .

[72]  Selden B. Crary,et al.  Design of Computer Experiments for Metamodel Generation , 2002 .

[73]  E. S. Pearson SOME ASPECTS OF THE PROBLEM OF RANDOMIZATION , 1937 .

[74]  Johann Sienz,et al.  Formulation of the Optimal Latin Hypercube Design of Experiments Using a Permutation Genetic Algorithm , 2004 .

[75]  Kenny Q. Ye Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .

[76]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[77]  Frank Yates,et al.  The principles of orthogonality and confounding in replicated experiments. (With Seven Text-figures.) , 1933, The Journal of Agricultural Science.

[78]  Neil A. Butler,et al.  Supersaturated Latin Hypercube Designs , 2005 .

[79]  Wei Chen,et al.  Optimizing Latin hypercube design for sequential sampling of computer experiments , 2009 .

[80]  Alison L. Marsden,et al.  A computational framework for derivative-free optimization of cardiovascular geometries , 2008 .