Construction of accelerating wavepackets

Abstract Accelerating wavepackets are obtained by applying the extended Galilean transformation to free-space particle wavepackets, or to time-dependent bound states. The transformed Schrodinger equation contains a potential term, which drives the acceleration. The method reproduces Darwin’s result for an accelerating Gaussian wavepacket in a constant force field, and Schrodinger’s oscillating wavepacket in a harmonic well. We also derive a new accelerating Airy wavepacket in a gravitational field, and give a new derivation of oscillating wavepackets based on the higher harmonic oscillator energy eigenstates. These results illustrate an analytic method of dealing with wavepackets accelerating in force fields.

[1]  John Lekner Airy wavepacket solutions of the Schrödinger equation , 2009 .

[2]  E. Schrödinger Der stetige Übergang von der Mikro- zur Makromechanik , 1926, Naturwissenschaften.

[3]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[4]  D. Greenberger Inadequacy of the usual Galilean transformation in quantum mechanics. , 2001, Physical review letters.

[5]  E. Merzbacher Quantum mechanics , 1961 .

[6]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[7]  G. Rosen Galilean Invariance and the General Covariance of Nonrelativistic Laws , 1972 .

[8]  L. Simmons,et al.  Coherent states for general potentials , 1978 .

[9]  J. Lekner Reflectionless eigenstates of the sech2 potential , 2007 .

[10]  C. Darwin Free Motion in the Wave Mechanics , 1927 .

[11]  Othmar Koch,et al.  Approximation of the time-dependent electronic Schrödinger equation by MCTDHF , 2006, Appl. Math. Comput..

[12]  G. Bowman Quantum-mechanical time evolution and uniform forces , 2006 .

[13]  M. J. Englefield Explicit solutions of the time-dependent Schrodinger equation , 1987 .

[14]  C. J. Eliezer,et al.  The equivalence principle and quantum mechanics , 1977 .

[15]  W. Rudolph Oxidation of carotene. , 1938 .

[16]  Reflection and Non-Reflection of Particle Wavepackets. , 2008 .

[17]  J. Lekner,et al.  Quantum bouncer on a spring , 2009 .

[18]  D. Greenberger Comment on ’’Nonspreading wave packets’’ , 1980 .

[19]  D. Greenberger Some Remarks on the Extended Galilean Transformation. , 1979 .