The method of fundamental solutions for eigenproblems in domains with and without interior holes

The main purpose of the present paper is to provide a general method of fundamental solution (MFS) formulation for two- and three-dimensional eigenproblems without spurious eigenvalues. The spurious eigenvalues are avoided by utilizing the mixed potential method. Illustrated problems in the annular and concentric domains are studied analytically and numerically to demonstrate the issue of spurious eigenvalues by the discrete and continuous versions of the MFS with and without the mixed potential method. The proposed numerical method is then verified with the exact solutions of the benchmark problems in circular and spherical domains with and without holes. Further studies are performed in a three-dimensional peanut shaped domain. In the spirit of the MFS, this scheme is free from meshes, singularities and numerical integrations.

[1]  Olaf Steinbach,et al.  Boundary Element Analysis , 2007 .

[2]  K. H. Chen,et al.  Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function , 2002 .

[3]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[4]  Hong-Ki Hong,et al.  Spurious and true eigensolutions of Helmholtz BIEs and BEMs for a multiply connected problem , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Young-Seok Kang,et al.  VIBRATION ANALYSIS OF ARBITRARILY SHAPED MEMBRANES USING NON-DIMENSIONAL DYNAMIC INFLUENCE FUNCTION , 1999 .

[6]  K. H. Chen,et al.  The Boundary Collocation Method with Meshless Concept for Acoustic Eigenanalysis of Two-Dimensional Cavities Using Radial Basis Function , 2002 .

[7]  Y. C. Cheng,et al.  Comment on "Eigenmode analysis of arbitrarily shaped two-dimensional cavities by the method of point matching". , 2002, The Journal of the Acoustical Society of America.

[8]  F. C. Wong,et al.  Analytical derivations for one-dimensional eigenproblems using dual boundary element method and multiple reciprocity method , 1997 .

[9]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[10]  Jeng-Tzong Chen,et al.  Eigensolutions of multiply connected membranes using the method of fundamental solutions , 2005 .

[11]  Shin-Hyoung Kang,et al.  APPLICATION OF FREE VIBRATION ANALYSIS OF MEMBRANES USING THE NON-DIMENSIONAL DYNAMIC INFLUENCE FUNCTION , 2000 .

[12]  F. Casadei,et al.  Containment of blast phenomena in underground electrical power plants , 1998 .

[13]  Michael A. Golberg,et al.  The method of fundamental solutions for Poisson's equation , 1995 .

[14]  Shyh-Rong Kuo,et al.  Analytical study and numerical experiments for true and spurious eigensolutions of a circular cavity using the real‐part dual BEM , 2000 .

[15]  K. H. Chen,et al.  Determination of spurious eigenvalues and multiplicities of true eigenvalues using the real-part dual BEM , 1999 .

[16]  G. Fairweather,et al.  The method of fundamental solutions for problems in potential flow , 1984 .

[17]  J. Chena,et al.  A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function , 2004 .

[18]  D. L. Young,et al.  Time-dependent fundamental solutions for homogeneous diffusion problems , 2004 .

[19]  D. L. Young,et al.  The method of fundamental solutions for Stokes flow in a rectangular cavity with cylinders , 2005 .

[20]  K. H. Chen,et al.  COMMENTS ON &&VIBRATION ANALYSIS OF ARBITRARY SHAPED MEMBRANES USING NON-DIMENSIONAL DYNAMIC INFLUENCE FUNCTION'' , 2000 .

[21]  D. L. Young,et al.  Short Note: The method of fundamental solutions for 2D and 3D Stokes problems , 2006 .

[22]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  Richard Paul Shaw,et al.  Helmholtz‐equation eigenvalues and eigenmodes for arbitrary domains , 1974 .

[24]  F. C. Wong,et al.  DUAL FORMULATION OF MULTIPLE RECIPROCITY METHOD FOR THE ACOUSTIC MODE OF A CAVITY WITH A THIN PARTITION , 1998 .

[25]  G. de Mey,et al.  A simplified integral equation method for the calculation of the eigenvalues of Helmholtz equation , 1977 .

[26]  Andreas Karageorghis,et al.  The method of fundamental solutions for the calculation of the eigenvalues of the Helmholtz equation , 2001, Appl. Math. Lett..

[27]  Graeme Fairweather,et al.  The method of fundamental solutions for the numerical solution of the biharmonic equation , 1987 .

[28]  D J Shippy,et al.  Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions. , 1990, The Journal of the Acoustical Society of America.

[29]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[30]  S. Chyuan,et al.  Boundary element analysis for the Helmholtz eigenvalue problems with a multiply connected domain , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[32]  Jeng-Tzong Chen,et al.  A study on the multiple reciprocity method and complex-valued formulation for the Helmholtz equation , 1998 .

[33]  C. Fan,et al.  Direct approach to solve nonhomogeneous diffusion problems using fundamental solutions and dual reciprocity methods , 2004 .

[34]  北原 道弘 Boundary integral equation methods in eigenvalue problems of elastodynamics and thin plates , 1985 .