Minimal Model for Fast Scrambling.

We study quantum information scrambling in spin models with both long-range all-to-all and short-range interactions. We argue that a simple global, spatially homogeneous interaction together with local chaotic dynamics is sufficient to give rise to fast scrambling, which describes the spread of quantum information over the entire system in a time that is logarithmic in the system size. This is illustrated in two tractable models: (1) a random circuit with Haar random local unitaries and a global interaction and (2) a classical model of globally coupled nonlinear oscillators. We use exact numerics to provide further evidence by studying the time evolution of an out-of-time-order correlator and entanglement entropy in spin chains of intermediate sizes. Our results pave the way towards experimental investigations of fast scrambling and aspects of quantum gravity with quantum simulators.

[1]  Marko Znidaric,et al.  Exact convergence times for generation of random bipartite entanglement , 2008, 0809.0554.

[2]  V. Vuletić,et al.  Implementation of cavity squeezing of a collective atomic spin. , 2009, Physical review letters.

[3]  Michael J Biercuk,et al.  Spectroscopy and thermometry of drumhead modes in a mesoscopic trapped-ion crystal using entanglement. , 2012, Physical review letters.

[4]  A. Rey,et al.  Cavity-QED simulator of slow and fast scrambling , 2018, Physical Review A.

[5]  Yevgeny Bar Lev,et al.  Information propagation in isolated quantum systems , 2017, 1702.03929.

[6]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[7]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[8]  M. Buchhold,et al.  Quantum-optical magnets with competing short- and long-range interactions: Rydberg-dressed spin lattice in an optical cavity , 2016, 1608.01319.

[9]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[10]  A. Sørensen,et al.  Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement. , 2008, Physical review letters.

[11]  P. Zoller,et al.  Driven-dissipative dynamics of a strongly interacting Rydberg gas , 2012, 1207.2659.

[12]  A. Daley,et al.  Treelike Interactions and Fast Scrambling with Cold Atoms. , 2019, Physical review letters.

[13]  Shenglong Xu,et al.  Accessing scrambling using matrix product operators , 2018, Nature Physics.

[14]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[15]  J. Alicea,et al.  Approximating the Sachdev-Ye-Kitaev model with Majorana wires , 2017, 1703.06890.

[16]  A. Silberfarb,et al.  Quantum control of the hyperfine spin of a Cs atom ensemble. , 2007, Physical review letters.

[17]  H. Weimer,et al.  Collective many-body interaction in Rydberg dressed atoms. , 2010, Physical review letters.

[18]  B. Swingle,et al.  Quantum Butterfly Effect in Weakly Interacting Diffusive Metals , 2017, 1703.07353.

[19]  M. Gullans,et al.  Fractional Quantum Hall Phases of Bosons with Tunable Interactions: From the Laughlin Liquid to a Fractional Wigner Crystal. , 2018, Physical review letters.

[20]  Lin Zhang,et al.  Matrix integrals over unitary groups: An application of Schur-Weyl duality , 2014, 1408.3782.

[21]  N. Yao,et al.  Dicke time crystals in driven-dissipative quantum many-body systems , 2019, New Journal of Physics.

[22]  F. de Juan,et al.  Quantum Holography in a Graphene Flake with an Irregular Boundary. , 2018, Physical review letters.

[23]  L. F. Santos,et al.  Quantum and Classical Lyapunov Exponents in Atom-Field Interaction Systems. , 2018, Physical review letters.

[24]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[25]  Shenglong Xu,et al.  Locality, Quantum Fluctuations, and Scrambling , 2018, Physical Review X.

[26]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[27]  J. Kurchan Quantum Bound to Chaos and the Semiclassical Limit , 2016, Journal of Statistical Physics.

[28]  E. Bogomolny,et al.  Distribution of the ratio of consecutive level spacings in random matrix ensembles. , 2012, Physical review letters.

[29]  T. Zhou,et al.  Operator dynamics in a Brownian quantum circuit. , 2018, Physical review. E.

[30]  Masaki Tezuka,et al.  Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity , 2016, 1606.02454.

[31]  A. Gambassi,et al.  Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations. , 2017, Physical review letters.

[32]  M. Schleier-Smith,et al.  Squeezing the collective spin of a dilute atomic ensemble by cavity feedback , 2009, 0911.3936.

[33]  Entangling atoms in bad cavities , 2002, quant-ph/0202073.

[34]  Generalized Dicke nonequilibrium dynamics in trapped ions. , 2013, Physical review letters.

[35]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[36]  J. Freericks,et al.  Phonon-mediated quantum spin simulator employing a planar ionic crystal in a Penning trap , 2012, 1211.2842.

[37]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[38]  P. Zoller,et al.  Strongly correlated gases of Rydberg-dressed atoms: quantum and classical dynamics. , 2010, Physical review letters.

[39]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[40]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[41]  Sriram Ganeshan,et al.  Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System. , 2016, Physical review letters.

[42]  R. Jalabert,et al.  Semiclassical theory of out-of-time-order correlators for low-dimensional classically chaotic systems , 2018, Physical Review E.

[43]  M. L. Wall,et al.  Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet , 2016, Nature Physics.

[44]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[45]  Ye,et al.  Gapless spin-fluid ground state in a random quantum Heisenberg magnet. , 1992, Physical review letters.

[46]  B. Zeng,et al.  Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator , 2016, 1609.01246.

[47]  Chaos in a classical limit of the Sachdev-Ye-Kitaev model , 2019, Physical Review B.

[48]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  Bin Yan,et al.  Information Scrambling and Loschmidt Echo. , 2019, Physical review letters.

[50]  X. Qi,et al.  Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models , 2016, 1609.07832.

[51]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[52]  J. Iacono,et al.  Locality , 2019, Definitions.

[53]  M. B. Plenio,et al.  The emergence of typical entanglement in two-party random processes , 2007 .

[54]  M. Hafezi,et al.  Measurement of many-body chaos using a quantum clock , 2016, 1607.00079.

[55]  C. Monroe,et al.  Verified quantum information scrambling , 2018, Nature.

[56]  P. Goldbart,et al.  Frustration and glassiness in spin models with cavity-mediated interactions. , 2011, Physical review letters.

[57]  P. Strack,et al.  Dicke quantum spin glass of atoms and photons. , 2011, Physical review letters.

[58]  P. Hayden,et al.  Measuring the scrambling of quantum information , 2016, 1602.06271.

[59]  C. Ramanathan,et al.  Exploring Localization in Nuclear Spin Chains. , 2016, Physical review letters.

[60]  Peter L. McMahon,et al.  A quantum annealer with fully programmable all-to-all coupling via Floquet engineering , 2019, npj Quantum Information.

[61]  A. Lucas,et al.  Bound on quantum scrambling with all-to-all interactions , 2020, 2005.07558.

[62]  R. Moessner,et al.  Temperature Dependence of the Butterfly Effect in a Classical Many-Body System. , 2018, Physical review letters.

[63]  P. Hayden,et al.  Towards the fast scrambling conjecture , 2011, Journal of High Energy Physics.