Sodium and Sodium‐Ion Batteries: 50 Years of Research
暂无分享,去创建一个
[1] Jean-Marie Tarascon,et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.
[2] A. Mendiboure,et al. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .
[3] M. Whittingham,et al. The physical properties of the NaxTiS2 intercalation compounds: A synthetic and NMR study , 1976 .
[4] M. Armand,et al. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.
[5] J. Dahn,et al. O2 Structure Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries III. Ion Exchange , 2000 .
[6] C. Delmas,et al. P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.
[7] D. Stevens,et al. The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .
[8] J. Rouxel. Chalcogénures lamellaires et intercalaires alcalins , 1977 .
[9] H. Hong,et al. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .
[10] Yasuo Takeda,et al. Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery , 1999 .
[11] Junmei Zhao,et al. Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .
[12] Shinichi Komaba,et al. Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .
[13] P. Hagenmuller,et al. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .
[14] Chunmei Li,et al. Sodium-Oxygen Battery: Steps Toward Reality. , 2016, The journal of physical chemistry letters.
[15] S. Passerini,et al. Layered Na‐Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P‐ and O‐Type Phases , 2015, Advanced energy materials.
[16] Kathryn E. Toghill,et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.
[17] L. Trichet,et al. Les conducteurs ioniques NaxInxZr1−xS2 , 1977 .
[18] Teófilo Rojo,et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .
[19] Yuping Wu,et al. A sodium ion conducting gel polymer electrolyte , 2015 .
[20] J. Dahn,et al. Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2 , 2001 .
[21] Laure Monconduit,et al. NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .
[22] P. Hagenmuller,et al. Conductivite ionique du lithium dans les verres du systeme B2O3 Li2O LiCl , 1978 .
[23] Christian Masquelier,et al. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.
[24] Jun Liu,et al. Electrochemical energy storage for green grid. , 2011, Chemical reviews.
[25] Xiulei Ji,et al. Hard carbon anodes of sodium-ion batteries: undervalued rate capability. , 2017, Chemical communications.
[26] C. Delmas,et al. Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .
[27] Z. Deng,et al. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.
[28] Marca M. Doeff,et al. Electrochemical Insertion of Sodium into Carbon , 1993 .
[29] J. T. Kummer,et al. Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .
[30] J. Gopalakrishnan,et al. Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .
[31] J. L. Gómez‐Cámer,et al. Na‐Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation , 2017 .
[32] C. Delmas,et al. Les phases KxMnO2 (x < 1) , 1976 .
[33] P. Hagenmuller,et al. Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .
[34] Atsushi Sakuda,et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.
[35] Yang‐Kook Sun,et al. Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .
[36] J. Carrasco,et al. Origins of Bistability and Na Ion Mobility Difference in P2‐ and O3‐Na2/3Fe2/3Mn1/3O2 Cathode Polymorphs , 2017 .
[37] M. Armand,et al. Graphite intercalation compounds as cathode materials , 1977 .
[38] Yang Shao-Horn,et al. Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries. , 2015, The journal of physical chemistry letters.
[39] Khiem Trad,et al. NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries , 2010 .
[40] Yuesheng Wang,et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.
[41] John B. Goodenough,et al. Fast Na+-ion transport in skeleton structures , 1976 .
[42] D. Stevens,et al. High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .
[43] M. Whittingham,et al. Electrical Energy Storage and Intercalation Chemistry , 1976, Science.
[44] M. R. Palacín,et al. Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .
[45] W. Bragg,et al. The Structure of β Alumina , 1931 .
[46] P. Hagenmuller,et al. A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .
[47] D. Murphy,et al. Convenient preparation and physical properties of lithium intercalation compounds of Group 4B and 5B layered transition metal dichalcogenides , 1976 .
[48] C. Beevers,et al. The Crystal Structure of “Beta Alumina” Na2O·11Al2O3 , 1937 .
[49] Kent J. Griffith,et al. Sodium Intercalation Mechanism of 3.8 V Class Alluaudite Sodium Iron Sulfate , 2016 .
[50] Philipp Adelhelm,et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.
[51] P. Hagenmuller,et al. Sur de nouveaux conducteurs ioniques a structure lamellaire , 1976 .
[52] K. Kubota,et al. Layered oxides as positive electrode materials for Na-ion batteries , 2014 .
[53] Jin Il Kim,et al. A Structurable Gel‐Polymer Electrolyte for Sodium Ion Batteries , 2017 .
[54] Yasuo Takeda,et al. Sodium deintercalation from sodium iron oxide , 1994 .
[55] Xin-bo Zhang,et al. Optimized nitrogen-doped carbon with a hierarchically porous structure as a highly efficient cathode for Na–O2 batteries , 2016 .
[56] D Carlier,et al. Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.
[57] Jeremy Barker,et al. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 , 2006 .
[58] Ying Shirley Meng,et al. RECENT ADVANCES IN SODIUM INTERCALATION POSITIVE ELECTRODE MATERIALS FOR SODIUM ION BATTERIES , 2013 .
[59] P. Hagenmuller,et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .
[60] Laure Monconduit,et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.
[61] M. Whittingham,et al. n‐Butyllithium—An Effective, General Cathode Screening Agent , 1977 .
[62] M. Armand,et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.
[63] Jun Chen,et al. All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .
[64] John B Goodenough,et al. Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.
[65] L. Nazar,et al. Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .
[66] M. Armand,et al. Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.
[67] Mark N. Obrovac,et al. Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .
[68] Masahiro Tatsumisago,et al. Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .
[69] K. Kubota,et al. Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .
[70] M. Stanley Whittingham,et al. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .
[71] P. Hagenmuller,et al. Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .
[72] P. Hagenmuller,et al. Determination structurale de la boracite Li4B7O12Cl , 1973 .
[73] F. Fauth,et al. Strong Impact of the Oxygen Content in Na3V2(PO4)2F3–yOy (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties , 2016 .
[74] L. Nazar,et al. Sodium and sodium-ion energy storage batteries , 2012 .
[75] J. Portier,et al. Application du tracé des diagrammes d'impédance complexe à la détermination de la conductivité ionique des solutions solides Ca1−xYxF2+x: Corrélations entre propriétés electriques et structurales , 1976 .
[76] R. Huggins,et al. Ionic conductivity of lithium phosphate-doped lithium orthosilicate , 1976 .
[77] J. Yamaki,et al. Electrochemical insertion of lithium and sodium into (MoO2)2P2O7 , 2003 .
[78] Shinichi Komaba,et al. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.
[79] P. Hagenmuller,et al. Les phases KXCrO2 (X ⩽ 1) , 1975 .
[80] Sai-Cheong Chung,et al. A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .
[81] P. Colombet,et al. Preparation and structure of alkali metal intercalation compounds , 1979 .
[82] P. Bruce,et al. Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials , 2015 .
[83] R. Huggins,et al. Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .
[84] Shigeto Okada,et al. Cathode properties of Na2C6O6 for sodium-ion batteries , 2013 .
[85] Gerbrand Ceder,et al. Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .
[86] D. Murphy,et al. Metal chalcogenides as reversible electrodes in nonaqueous lithium batteries , 1977 .
[87] Linda F. Nazar,et al. Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .
[88] G. Ceder,et al. Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x 0.4) , 2016 .
[89] Xin Li,et al. Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. , 2014, Nature materials.
[90] P. Hagenmuller,et al. A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .
[91] P. Hagenmuller,et al. A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction , 1982 .
[92] Jang‐Yeon Hwang,et al. Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.
[93] Haegyeom Kim,et al. Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .
[94] T. Horiba,et al. High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries , 2017 .
[95] Haoshen Zhou,et al. High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode , 2014 .
[96] F. Fauth,et al. Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study , 2014 .
[97] N. Sharma,et al. The NaxMoO2 Phase Diagram (1/2 ≤ x < 1): An Electrochemical Devil’s Staircase , 2017 .
[98] Caridad Ruiz-Valero,et al. Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni) , 2001 .
[99] Jean-Marie Tarascon,et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .
[100] J. Paasiv́irta,et al. The Crystal Structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr. , 1968 .
[101] Philippe Moreau,et al. Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .
[102] A. Méhauté,et al. Insertion de lithium la structure lamellaire NiPS3 , 1977 .
[103] K. S. Nanjundaswamy,et al. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .