Sodium and Sodium‐Ion Batteries: 50 Years of Research

Pumped-Storage of Water: It is the most efficient; it is developed in very large scale capacity storage facilities which require specific sites; nevertheless, in the future due to its long lifetime it will play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage. Electrochemical Energy Storage in Batteries: It is now used locally in some places that are not connected to the electricity network and on the smart grids for frequency regulation or small peak production shifts. Examples include sodium sulfur batteries (NaS) which are used in Japan; redox flow batteries under development, and some large scale lithium–ion batteries (LIBs) that are used in specific places. Storage via Hydrogen: The development of hydrogen as a way of using fuel cells is considered and seems very interesting from the pollution point of view at the local scale. From the technical point of view, most of the problems are almost solved. Nevertheless, hydrogen has to be produced and stored; and in this case, the yield is quite low, similar to that of the internal combustion engine. Electricity storage via hydrogen requires water electrolysis, H2 gas storage, and electricity production in fuel cells, all of which leads to a low efficiency and therefore, significant energy loss during electricity storage.

[1]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[2]  A. Mendiboure,et al.  Electrochemical intercalation and deintercalation of NaxMnO2 bronzes , 1985 .

[3]  M. Whittingham,et al.  The physical properties of the NaxTiS2 intercalation compounds: A synthetic and NMR study , 1976 .

[4]  M. Armand,et al.  Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. , 2010, Inorganic chemistry.

[5]  J. Dahn,et al.  O2 Structure Li2 / 3 [ Ni1 / 3Mn2 / 3 ] O 2: A New Layered Cathode Material for Rechargeable Lithium Batteries III. Ion Exchange , 2000 .

[6]  C. Delmas,et al.  P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. , 2013, Nature materials.

[7]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[8]  J. Rouxel Chalcogénures lamellaires et intercalaires alcalins , 1977 .

[9]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[10]  Yasuo Takeda,et al.  Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery , 1999 .

[11]  Junmei Zhao,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[12]  Shinichi Komaba,et al.  Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .

[13]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[14]  Chunmei Li,et al.  Sodium-Oxygen Battery: Steps Toward Reality. , 2016, The journal of physical chemistry letters.

[15]  S. Passerini,et al.  Layered Na‐Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P‐ and O‐Type Phases , 2015, Advanced energy materials.

[16]  Kathryn E. Toghill,et al.  A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.

[17]  L. Trichet,et al.  Les conducteurs ioniques NaxInxZr1−xS2 , 1977 .

[18]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[19]  Yuping Wu,et al.  A sodium ion conducting gel polymer electrolyte , 2015 .

[20]  J. Dahn,et al.  Effects of Stacking Fault Defects on the X-ray Diffraction Patterns of T2, O2, and O6 Structure Li2/3[CoxNi1/3-xMn2/3]O2 , 2001 .

[21]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[22]  P. Hagenmuller,et al.  Conductivite ionique du lithium dans les verres du systeme B2O3 Li2O LiCl , 1978 .

[23]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[24]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[25]  Xiulei Ji,et al.  Hard carbon anodes of sodium-ion batteries: undervalued rate capability. , 2017, Chemical communications.

[26]  C. Delmas,et al.  Structural and Electrochemical Characterizations of P2 and New O3-NaxMn1-yFeyO2 Phases Prepared by Auto-Combustion Synthesis for Na-Ion Batteries , 2013 .

[27]  Z. Deng,et al.  Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor , 2016, Scientific Reports.

[28]  Marca M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[29]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[30]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[31]  J. L. Gómez‐Cámer,et al.  Na‐Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation , 2017 .

[32]  C. Delmas,et al.  Les phases KxMnO2 (x < 1) , 1976 .

[33]  P. Hagenmuller,et al.  Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1) , 1971 .

[34]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[35]  Yang‐Kook Sun,et al.  Reversible NaFePO4 electrode for sodium secondary batteries , 2012 .

[36]  J. Carrasco,et al.  Origins of Bistability and Na Ion Mobility Difference in P2‐ and O3‐Na2/3Fe2/3Mn1/3O2 Cathode Polymorphs , 2017 .

[37]  M. Armand,et al.  Graphite intercalation compounds as cathode materials , 1977 .

[38]  Yang Shao-Horn,et al.  Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries. , 2015, The journal of physical chemistry letters.

[39]  Khiem Trad,et al.  NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium Batteries , 2010 .

[40]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[41]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[42]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[43]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[44]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[45]  W. Bragg,et al.  The Structure of β Alumina , 1931 .

[46]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[47]  D. Murphy,et al.  Convenient preparation and physical properties of lithium intercalation compounds of Group 4B and 5B layered transition metal dichalcogenides , 1976 .

[48]  C. Beevers,et al.  The Crystal Structure of “Beta Alumina” Na2O·11Al2O3 , 1937 .

[49]  Kent J. Griffith,et al.  Sodium Intercalation Mechanism of 3.8 V Class Alluaudite Sodium Iron Sulfate , 2016 .

[50]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[51]  P. Hagenmuller,et al.  Sur de nouveaux conducteurs ioniques a structure lamellaire , 1976 .

[52]  K. Kubota,et al.  Layered oxides as positive electrode materials for Na-ion batteries , 2014 .

[53]  Jin Il Kim,et al.  A Structurable Gel‐Polymer Electrolyte for Sodium Ion Batteries , 2017 .

[54]  Yasuo Takeda,et al.  Sodium deintercalation from sodium iron oxide , 1994 .

[55]  Xin-bo Zhang,et al.  Optimized nitrogen-doped carbon with a hierarchically porous structure as a highly efficient cathode for Na–O2 batteries , 2016 .

[56]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[57]  Jeremy Barker,et al.  The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3 , 2006 .

[58]  Ying Shirley Meng,et al.  RECENT ADVANCES IN SODIUM INTERCALATION POSITIVE ELECTRODE MATERIALS FOR SODIUM ION BATTERIES , 2013 .

[59]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[60]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[61]  M. Whittingham,et al.  n‐Butyllithium—An Effective, General Cathode Screening Agent , 1977 .

[62]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[63]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[64]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[65]  L. Nazar,et al.  Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .

[66]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[67]  Mark N. Obrovac,et al.  Structure and Electrochemistry of NaxFexMn1-xO2 (1.0 , 2013 .

[68]  Masahiro Tatsumisago,et al.  Preparation and characterization of highly sodium ion conducting Na3PS4–Na4SiS4 solid electrolytes , 2014 .

[69]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[70]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[71]  P. Hagenmuller,et al.  Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .

[72]  P. Hagenmuller,et al.  Determination structurale de la boracite Li4B7O12Cl , 1973 .

[73]  F. Fauth,et al.  Strong Impact of the Oxygen Content in Na3V2(PO4)2F3–yOy (0 ≤ y ≤ 0.5) on Its Structural and Electrochemical Properties , 2016 .

[74]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[75]  J. Portier,et al.  Application du tracé des diagrammes d'impédance complexe à la détermination de la conductivité ionique des solutions solides Ca1−xYxF2+x: Corrélations entre propriétés electriques et structurales , 1976 .

[76]  R. Huggins,et al.  Ionic conductivity of lithium phosphate-doped lithium orthosilicate , 1976 .

[77]  J. Yamaki,et al.  Electrochemical insertion of lithium and sodium into (MoO2)2P2O7 , 2003 .

[78]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[79]  P. Hagenmuller,et al.  Les phases KXCrO2 (X ⩽ 1) , 1975 .

[80]  Sai-Cheong Chung,et al.  A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries , 2013 .

[81]  P. Colombet,et al.  Preparation and structure of alkali metal intercalation compounds , 1979 .

[82]  P. Bruce,et al.  Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials , 2015 .

[83]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[84]  Shigeto Okada,et al.  Cathode properties of Na2C6O6 for sodium-ion batteries , 2013 .

[85]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[86]  D. Murphy,et al.  Metal chalcogenides as reversible electrodes in nonaqueous lithium batteries , 1977 .

[87]  Linda F. Nazar,et al.  Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries , 2011 .

[88]  G. Ceder,et al.  Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x 0.4) , 2016 .

[89]  Xin Li,et al.  Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2. , 2014, Nature materials.

[90]  P. Hagenmuller,et al.  A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .

[91]  P. Hagenmuller,et al.  A new variety of LiCoO2 with an unusual oxygen packing obtained by exchange reaction , 1982 .

[92]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[93]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[94]  T. Horiba,et al.  High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries , 2017 .

[95]  Haoshen Zhou,et al.  High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode , 2014 .

[96]  F. Fauth,et al.  Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study , 2014 .

[97]  N. Sharma,et al.  The NaxMoO2 Phase Diagram (1/2 ≤ x < 1): An Electrochemical Devil’s Staircase , 2017 .

[98]  Caridad Ruiz-Valero,et al.  Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni) , 2001 .

[99]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[100]  J. Paasiv́irta,et al.  The Crystal Structure of NaM2IV(PO4)3; MeIV = Ge, Ti, Zr. , 1968 .

[101]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[102]  A. Méhauté,et al.  Insertion de lithium la structure lamellaire NiPS3 , 1977 .

[103]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .