Efficient optimally regularized discriminant analysis

Abstract Regularized discriminant analysis (RDA) and its special case uncorrelated linear discriminant analysis (ULDA) are important subspace learning methods proposed recently to handle the small sample size (SSS) problem of linear discriminant analysis (LDA). One important unsolved issue of RDA is how to automatically determine an appropriate regularization parameter without resorting to unscalable procedures like cross-validation (CV). In this paper, we develop a novel efficient algorithm to automatically estimate the regularization parameter based on a geometric interpretation of RDA. We further provide a formal analysis of the proposed method, and show that it is robust to the perturbation in the feature space of the training data. The extensive experiments on various benchmark datasets verify the scalability and effectiveness of our approach, compared with the state-of-the-art algorithms.

[1]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Zhi-Hua Zhou,et al.  Least Square Incremental Linear Discriminant Analysis , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[3]  Xudong Jiang,et al.  Asymmetric Principal Component and Discriminant Analyses for Pattern Classification , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Lei-Hong Zhang,et al.  Uncorrelated trace ratio linear discriminant analysis for undersampled problems , 2011, Pattern Recognit. Lett..

[5]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[6]  Jiawei Han,et al.  Spectral Regression: A Unified Approach for Sparse Subspace Learning , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[7]  Baback Moghaddam,et al.  Principal Manifolds and Probabilistic Subspaces for Visual Recognition , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Zhihua Zhang,et al.  Regularized Discriminant Analysis, Ridge Regression and Beyond , 2010, J. Mach. Learn. Res..

[9]  Feiping Nie,et al.  Trace Ratio Problem Revisited , 2009, IEEE Transactions on Neural Networks.

[10]  Jian-Huang Lai,et al.  1D-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based? , 2008, Pattern Recognit..

[11]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Jieping Ye,et al.  Using uncorrelated discriminant analysis for tissue classification with gene expression data , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Jiawei Han,et al.  Speed up kernel discriminant analysis , 2011, The VLDB Journal.

[14]  YangJian,et al.  Globally Maximizing, Locally Minimizing , 2007 .

[15]  Marc Sebban,et al.  Similarity Learning for Provably Accurate Sparse Linear Classification , 2012, ICML.

[16]  Tao Jiang,et al.  Efficient and robust feature extraction by maximum margin criterion , 2003, IEEE Transactions on Neural Networks.

[17]  Shuicheng Yan,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007 .

[18]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[19]  Jiawei Han,et al.  SRDA: An Efficient Algorithm for Large-Scale Discriminant Analysis , 2008, IEEE Transactions on Knowledge and Data Engineering.

[20]  Xudong Jiang,et al.  Eigenfeature Regularization and Extraction in Face Recognition , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Jian-Huang Lai,et al.  Perturbation LDA: Learning the difference between the class empirical mean and its expectation , 2009, Pattern Recognit..

[22]  Xiaogang Wang,et al.  Dual-space linear discriminant analysis for face recognition , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[23]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Daoqiang Zhang,et al.  Semi-Supervised Dimensionality Reduction ∗ , 2007 .

[25]  Shuicheng Yan,et al.  Ubiquitously Supervised Subspace Learning , 2009, IEEE Transactions on Image Processing.

[26]  J. Friedman Regularized Discriminant Analysis , 1989 .

[27]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Prateek Jain,et al.  Similarity-based Learning via Data Driven Embeddings , 2011, NIPS.

[29]  Jieping Ye,et al.  Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems , 2005, J. Mach. Learn. Res..

[30]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[31]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[32]  Honggang Zhang,et al.  Comments on "Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm Biometrics" , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Jieping Ye,et al.  Computational and Theoretical Analysis of Null Space and Orthogonal Linear Discriminant Analysis , 2006, J. Mach. Learn. Res..

[34]  Manuela M. Veloso,et al.  IJCAI-07 : proceedings of the Twentieth International Joint Conference on Artificial Intelligence, Hyderabad, India, 6-12 January 2007 , 2007 .

[35]  Jieping Ye,et al.  Generalized Linear Discriminant Analysis: A Unified Framework and Efficient Model Selection , 2008, IEEE Transactions on Neural Networks.

[36]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[37]  Xiaoyang Tan,et al.  A study on three linear discriminant analysis based methods in small sample size problem , 2008, Pattern Recognit..

[38]  Yousef Saad,et al.  Trace optimization and eigenproblems in dimension reduction methods , 2011, Numer. Linear Algebra Appl..

[39]  Jieping Ye,et al.  Least squares linear discriminant analysis , 2007, ICML '07.

[40]  Jieping Ye,et al.  A scalable two-stage approach for a class of dimensionality reduction techniques , 2010, KDD.

[41]  Bor-Chen Kuo,et al.  A covariance estimator for small sample size classification problems and its application to feature extraction , 2002, IEEE Trans. Geosci. Remote. Sens..

[42]  Xudong Jiang,et al.  Prediction of eigenvalues and regularization of eigenfeatures for human face verification , 2010, Pattern Recognit. Lett..

[43]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[44]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Jieping Ye,et al.  A least squares formulation for a class of generalized eigenvalue problems in machine learning , 2009, ICML '09.

[46]  Jian Yang,et al.  Why can LDA be performed in PCA transformed space? , 2003, Pattern Recognit..

[47]  Xudong Jiang,et al.  Linear Subspace Learning-Based Dimensionality Reduction , 2011, IEEE Signal Processing Magazine.

[48]  Yeung Sam Hung,et al.  Characterization of All Solutions for Undersampled Uncorrelated Linear Discriminant Analysis Problems , 2011, SIAM J. Matrix Anal. Appl..

[49]  Sheng-De Wang,et al.  Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space , 2009, Pattern Recognit..