Vclusters: a flexible, fine-grained object clustering mechanism

We consider the problem of delivering an effective fine-grained clustering tool to implementors and users of object-oriented database systems. This work emphasizes on-line clustering mechanisms, as contrasted with earlier work that concentrates on clustering policies (deciding which objects should be near each other). Existing on-line clustering methods can be ineffective and/or difficult to use and may lead to poor space utilization on disk and in the disk block cache, particularly for small- to medium-size groups of objects. We introduce variable-size clusters (Vclusters), a fine-grained object clustering architecture that can be used directly or as the target of an automatic clustering algorithm. We describe an implementation of Vclusters in the Shore OODBMS and present experimental results that show that Vclusters significantly outperform other mechanisms commonly found in object database systems (fixed-size clusters and near hints). Vclusters deliver excellent clustering and space utilization with only a modest cost for maintaining clustering during updates.

[1]  John K Lyon An introduction to data base design , 1971 .

[2]  Elisa Bertino,et al.  Clustering Techniques in Object Bases: A Survey , 1994, Data Knowl. Eng..

[3]  Michael J. Carey,et al.  Storage management methods for object database systems , 1997 .

[4]  Betty Salzberg An Introduction to Data Base Design , 1986 .

[5]  Guido Moerkotte,et al.  Partition-Based Clustering in Object Bases: From Theory to Practice , 1993, FODO.

[6]  Betty Salzberg,et al.  Back to the future: dynamic hierarchical clustering , 1998, Proceedings 14th International Conference on Data Engineering.

[7]  Jeffrey F. Naughton,et al.  A stochastic approach for clustering in object bases , 1991, SIGMOD '91.

[8]  Richard T. Snodgrass,et al.  Semantic Clustering , 1990, POS.

[9]  J. Banerjee,et al.  Clustering a DAG for CAD Databases , 1988, IEEE Trans. Software Eng..

[10]  Hamid Pirahesh,et al.  ARIES: a transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging , 1998 .

[11]  Mark L. McAuli,et al.  Towards Eeective and Eecient Free Space Management , 1996 .

[12]  David J. DeWitt,et al.  The 007 Benchmark , 1993, SIGMOD '93.

[13]  O. Deux,et al.  The Story of O2 , 1990, IEEE Trans. Knowl. Data Eng..

[14]  Roger King,et al.  Cactis: a self-adaptive, concurrent implementation of an object-oriented database management system , 1989, ACM Trans. Database Syst..

[15]  David J. DeWitt,et al.  A Status Report on the oo7 OODBMS Benchmarking Effort , 1994, OOPSLA.

[16]  R. S. Fabry,et al.  A fast file system for UNIX , 1984, TOCS.

[17]  David J. DeWitt,et al.  The oo7 Benchmark , 1993, SIGMOD Conference.

[18]  O. Deux,et al.  The story of O 2 , 1992 .

[19]  Jeffrey F. Naughton,et al.  On the performance of object clustering techniques , 1992, SIGMOD '92.

[20]  John McPherson,et al.  An Incremental Join Attachment for Starburst , 1990, VLDB.

[21]  Sandra Heiler,et al.  Distributed Object Management , 1992, Int. J. Cooperative Inf. Syst..

[22]  Roger King,et al.  Self-adaptive, on-line reclustering of complex object data , 1994, SIGMOD '94.

[23]  David J. DeWitt,et al.  A status report on the OO7 OODBMS benchmarking effort , 1994, OOPSLA '94.

[24]  Randy H. Katz,et al.  Exploiting inheritance and structure semantics for effective clustering and buffering in an object-oriented DBMS , 1989, SIGMOD '89.

[25]  Randy H. Katz,et al.  Exploiting Inheritance and Structure Semantics for Effective , 1988 .

[26]  Ali R. Hurson,et al.  Effective clustering of complex objects in object-oriented databases , 1991, SIGMOD '91.

[27]  Stanley B. Zdonik,et al.  A shared, segmented memory system for an object-oriented database , 1987, TOIS.

[28]  Marvin H. Solomon,et al.  Towards effective and efficient free space management , 1996, SIGMOD '96.

[29]  Laurent Amsaleg,et al.  Object Grouping in Eos , 1992, IWDOM.

[30]  Roger King,et al.  The Performance and Utility of the Cactis Implementation Algorithms , 1990, VLDB.

[31]  Hamid Pirahesh,et al.  Starburst Mid-Flight: As the Dust Clears , 1990, IEEE Trans. Knowl. Data Eng..