On p-robust saturation for hp-AFEM

For the Poisson problem in two dimensions, we consider the standard adaptive finite element loop solve, estimate, mark, refine, with estimate being implemented using the p-robust equilibrated flux estimator, and, mark being Drfler marking. As a refinement strategy we employ p-refinement. We investigate the question by which amount the local polynomial degree on any marked patch has to be incremented in order to achieve a p-independent error reduction. We show that the analysis can be transferred from the patches to a reference triangle, and therein we provide clear-cut computational evidence that any increment proportional to the polynomial degree (for any fixed proportionality constant) yields the desired reduction. The resulting adaptive method can be turned into an instance optimal hp-adaptive method by the addition of a coarsening routine.

[1]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[2]  B. Guo,et al.  The hp version of the finite element method Part 1 : The basic approximation results , 2022 .

[3]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[4]  Ivan Yotov,et al.  Dimensional model reduction for flow through fractures in poroelastic media , 2016 .

[5]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[6]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[7]  E. Miglio,et al.  High-Order Variational Time Integrators for Particle Dynamics , 2018, Communications in Applied and Industrial Mathematics.

[8]  N. Parolini,et al.  Student interactions during class activities: a mathematical model , 2018, Communications in Applied and Industrial Mathematics.

[9]  Joachim Schöberl,et al.  Polynomial Extension Operators. Part I , 2008, SIAM J. Numer. Anal..

[10]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[11]  Ricardo H. Nochetto,et al.  Removing the saturation assumption in a posteriori error analysis , 1993 .

[12]  Peter Binev,et al.  Tree Approximation for hp-Adaptivity , 2018, SIAM J. Numer. Anal..

[13]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[14]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[15]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[16]  Willy Dörfler,et al.  Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .

[17]  C. Canuto,et al.  Convergence and Optimality of hp-AFEM , 2015, 1503.03996.

[18]  John A. D. Aston,et al.  Smooth Principal Component Analysis over two-dimensional manifolds with an application to Neuroimaging , 2016, 1601.03670.

[19]  Joachim Schöberl,et al.  Polynomial extension operators. Part III , 2012, Math. Comput..

[20]  J.,et al.  EFFICIENT PRECONDITIONING FOR THE p-VERSION FINITE ELEMENT METHOD IN TWO DIMENSIONS , .

[21]  Martin Costabel,et al.  On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.

[22]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[23]  W. Dörfler,et al.  Convergence of an adaptive hp finite element strategy in higher space-dimensions , 2010 .

[24]  Ricardo H. Nochetto,et al.  Convergence and optimality of $${\mathbf {hp}}$$hp-AFEM , 2016, Numerische Mathematik.

[25]  I. Babuška,et al.  The h-p version of the finite element method , 1986 .