On p-robust saturation for hp-AFEM
暂无分享,去创建一个
[1] Barbara I. Wohlmuth,et al. On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..
[2] B. Guo,et al. The hp version of the finite element method Part 1 : The basic approximation results , 2022 .
[3] Ralf Kornhuber,et al. A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .
[4] Ivan Yotov,et al. Dimensional model reduction for flow through fractures in poroelastic media , 2016 .
[5] Dietrich Braess,et al. Equilibrated residual error estimates are p-robust , 2009 .
[6] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[7] E. Miglio,et al. High-Order Variational Time Integrators for Particle Dynamics , 2018, Communications in Applied and Industrial Mathematics.
[8] N. Parolini,et al. Student interactions during class activities: a mathematical model , 2018, Communications in Applied and Industrial Mathematics.
[9] Joachim Schöberl,et al. Polynomial Extension Operators. Part I , 2008, SIAM J. Numer. Anal..
[10] Martin Vohralík,et al. Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..
[11] Ricardo H. Nochetto,et al. Removing the saturation assumption in a posteriori error analysis , 1993 .
[12] Peter Binev,et al. Tree Approximation for hp-Adaptivity , 2018, SIAM J. Numer. Anal..
[13] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[14] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[15] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[16] Willy Dörfler,et al. Convergence of an adaptive hp finite element strategy in one space dimension , 2007 .
[17] C. Canuto,et al. Convergence and Optimality of hp-AFEM , 2015, 1503.03996.
[18] John A. D. Aston,et al. Smooth Principal Component Analysis over two-dimensional manifolds with an application to Neuroimaging , 2016, 1601.03670.
[19] Joachim Schöberl,et al. Polynomial extension operators. Part III , 2012, Math. Comput..
[20] J.,et al. EFFICIENT PRECONDITIONING FOR THE p-VERSION FINITE ELEMENT METHOD IN TWO DIMENSIONS , .
[21] Martin Costabel,et al. On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains , 2008, 0808.2614.
[22] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[23] W. Dörfler,et al. Convergence of an adaptive hp finite element strategy in higher space-dimensions , 2010 .
[24] Ricardo H. Nochetto,et al. Convergence and optimality of $${\mathbf {hp}}$$hp-AFEM , 2016, Numerische Mathematik.
[25] I. Babuška,et al. The h-p version of the finite element method , 1986 .