Encapsulation of DNA-templated chromophore assemblies within virus protein nanotubes.

A beneficial virus: The hierarchical self-assembly of a three-component system consisting of single-stranded DNA (oligothymines; Tq), chromophores (G), and virus coat proteins (CP) leads to the formation of micrometer-long nanotubes (see picture). Tuning the interaction between the three components leads to the formation of structures with different length scales, and the chromophores within the nanotubes maintain the helical arrangement of the Tq–G template

[1]  K. Nelson,et al.  Virus-templated assembly of porphyrins into light-harvesting nanoantennae. , 2010, Journal of the American Chemical Society.

[2]  Masayuki Endo,et al.  Chemical Approaches to DNA Nanotechnology , 2009, Chembiochem : a European journal of chemical biology.

[3]  Madhavan Nallani,et al.  Biohybrid polymer capsules. , 2009, Chemical reviews.

[4]  R. Nolte,et al.  Viruses and protein cages as nanocontainers and nanoreactors , 2009 .

[5]  Itamar Willner,et al.  Enzyme cascades activated on topologically programmed DNA scaffolds. , 2009, Nature nanotechnology.

[6]  E. W. Meijer,et al.  Supramolecular Organization of ssDNA‐Templated π‐Conjugated Oligomers via Hydrogen Bonding , 2009 .

[7]  E. W. Meijer,et al.  Insights into templated supramolecular polymerization: binding of naphthalene derivatives to ssDNA templates of different lengths. , 2009, Journal of the American Chemical Society.

[8]  E. W. Meijer,et al.  White-light emitting hydrogen-bonded supramolecular copolymers based on pi-conjugated oligomers. , 2009, Journal of the American Chemical Society.

[9]  E. W. Meijer,et al.  Electrospray-ionization mass spectrometry for screening the specificity and stability of single-stranded-DNA templated self-assemblies. , 2009, Chemistry.

[10]  R. Nolte,et al.  Protein–Polymer Hybrid Amphiphiles , 2008 .

[11]  L. Andrew Lee,et al.  Biological templated synthesis of water-soluble conductive polymeric nanowires. , 2007, Nano letters.

[12]  Martin Fischlechner,et al.  Viruses as building blocks for materials and devices. , 2007, Angewandte Chemie.

[13]  Edwin Donath,et al.  Viren als Bauelemente für Materialien und Strukturen , 2007 .

[14]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[15]  Thomas H. LaBean,et al.  Constructing novel materials with DNA , 2007 .

[16]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[17]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[18]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[19]  A. Zlotnick,et al.  Redirecting the coat protein of a spherical virus to assemble into tubular nanostructures. , 2006, Journal of the American Chemical Society.

[20]  R. Twarock,et al.  Classification of capped tubular viral particles in the family of Papovaviridae , 2005, q-bio/0510028.

[21]  M. Finn,et al.  Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. , 2005, Bioconjugate chemistry.

[22]  R. Twarock,et al.  Mathematical models for tubular structures in the family of Papovaviridae , 2005, Bulletin of mathematical biology.

[23]  Giampaolo Zuccheri,et al.  DNA codes for nanoscience. , 2005, Angewandte Chemie.

[24]  Bruno Samorì,et al.  DNA‐Codes für die Nanowissenschaften , 2005 .

[25]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[26]  Kentaro Tanaka,et al.  A Discrete Self-Assembled Metal Array in Artificial DNA , 2003, Science.

[27]  N. Seeman DNA in a material world , 2003, Nature.

[28]  John E. Johnson,et al.  Icosahedral virus particles as addressable nanoscale building blocks. , 2002, Angewandte Chemie.

[29]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[30]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[31]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[32]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.