Modern Developments in the Theory and Applications of Moving Frames

′′ ′ !"" #"" $#" %"" %#" &'()* !"+"# " "+"# "+* !"+"*# !"+"* !"+""# " "+""# "+"* !"" #"" !#" #"" ##" $"" !"+"# " "+"# "+* !"+"*# !"+"* !"+""# " "+""# "+"* !"+"# " "+"# "+* !"+"*# !"+"* !"+""# " "+""# "+"*

[1]  Elizabeth L. Mansfield,et al.  A Practical Guide to the Invariant Calculus , 2010 .

[2]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[3]  Peter J. Olver,et al.  Algorithms for Differential Invariants of Symmetry Groups of Differential Equations , 2008, Found. Comput. Math..

[4]  G. Carpenter In Providence, R. I. , 1929 .

[5]  Peter J. Olver,et al.  Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.

[6]  Phillip A. Griffiths,et al.  On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .

[7]  R. McLenaghan,et al.  Equivalence problem for the orthogonal webs on the 3-sphere , 2010, 1009.4244.

[8]  Olivier D. Faugeras,et al.  Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.

[9]  飛鳥 高津 Cédric Villani: Optimal Transport——Old and New, Grundlehren Math. Wiss., 338, Springer, 2009年,xxii+973ページ. , 2015 .

[10]  Evelyne Hubert,et al.  Rational Invariants of a Group Action , 2013 .

[11]  Alfred M. Bruckstein,et al.  Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[12]  F. Valiquette,et al.  Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups , 2014, 1401.4380.

[13]  Alfred M. Bruckstein,et al.  Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..

[14]  Peter J. Olver,et al.  Relative and Absolute Differential Invariants for Conformal Curves , 2002 .

[15]  P. Olver,et al.  Maurer–Cartan forms and the structure of Lie pseudo-groups , 2005 .

[16]  Masatake Kuranishi On the local theory of continuous infinite pseudo groups. I , 1959 .

[17]  Peter J. Olver,et al.  Joint Invariant Signatures , 2001, Found. Comput. Math..

[18]  C. Villani Optimal Transport: Old and New , 2008 .

[19]  A. Grim,et al.  Applications of Signatures in Diagnosing Breast Cancer , 2015 .

[20]  P. Olver Invariant submanifold flows , 2008 .

[21]  Irina A. Kogan,et al.  Rational invariants of a group action. Construction and rewriting , 2007, J. Symb. Comput..

[22]  D. Hilbert,et al.  Theory of algebraic invariants , 1993 .

[23]  C. Hann,et al.  Projective Curvature and Integral Invariants , 2002 .

[24]  Bruno Buchberger,et al.  Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.

[25]  E. Mansfield,et al.  Moving Frames and Conservation Laws for Euclidean Invariant Lagrangians , 2011, 1106.3964.

[26]  Peter J. Olver,et al.  Generating differential invariants , 2007 .

[27]  Alfred M. Bruckstein,et al.  On differential invariants of planar curves and recognizing partially occluded planar shapes , 1995, Annals of Mathematics and Artificial Intelligence.

[28]  Theory of Algebraic Invariants of Vector Spaces of Killing Tensors: Methods for Computing the Fundamental Invariants , 2004 .

[29]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[30]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[31]  Cheri Shakiban,et al.  Classification of Signature Curves Using Latent Semantic Analysis , 2004, IWMM/GIAE.

[32]  Mireille Boutin Polygon Recognition and Symmetry Detection , 2003, Found. Comput. Math..

[33]  Joseph Patrick Kenney Evolution of differential invariant signatures and applications to shape recognition. , 2009 .

[34]  Oleg I. Morozov,et al.  Moving coframes and symmetries of differential equations , 2002 .

[35]  Vyacheslav M. Boyko,et al.  Invariants of solvable lie algebras with triangular nilradicals and diagonal nilindependent elements , 2007, 0706.2465.

[36]  P. Olver Recent Advances in the Theory and Application of Lie Pseudo‐Groups , 2010 .

[37]  598 HERMANN WEYL [ September CARTAN ON GROUPS AND DIFFERENTIAL GEOMETRY La Théorie des Groupes Finis et Continus et la Géométrie Différentielle traitées par la Méthode du Repère Mobile , 2022 .

[38]  Elizabeth L. Mansfield,et al.  On Moving Frames and Noether’s Conservation Laws , 2010, 1006.4660.

[39]  Mireille Boutin,et al.  Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.

[40]  Evelyne Hubert,et al.  Differential Invariants of Conformal and Projective Surfaces , 2007, 0710.0519.

[41]  Peter J. Olver,et al.  Differential invariants for parametrized projective surfaces , 1999 .

[42]  Vladimir Itskov,et al.  Orbit reduction of exterior differential systems, and group-invariant variational problems , 2000 .

[43]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[44]  I. M. Singer,et al.  The infinite groups of Lie and Cartan Part I, (The transitive groups) , 1965 .

[45]  Invariants of pseudogroup actions: Homological methods and Finiteness theorem , 2005, math/0511711.

[46]  Peter J. Olver,et al.  Moving frames and singularities of prolonged group actions , 2000 .

[47]  Irina A. Kogan,et al.  Invariants of objects and their images under surjective maps , 2015, ArXiv.

[48]  A. Kumpera,et al.  Invariants differentiels d'un pseudogroupe de Lie , 1975 .

[49]  Aytül Erçil,et al.  A Texture Based Approach to Reconstruction of Archaeological Finds , 2005, VAST.

[50]  Francis Valiquette,et al.  On the Cohomology of the Invariant Euler–Lagrange Complex , 2011 .

[51]  Hamid Krim,et al.  Classification of Curves in 2D and 3D via Affine Integral Signatures , 2008, ArXiv.

[52]  Cheri Shakiban,et al.  Signature Curves Statistics of DNA Supercoils , 2004 .

[53]  Martin Welk,et al.  Numerical Invariantization for Morphological PDE Schemes , 2007, SSVM.

[54]  P. Olver Differential invariants of surfaces , 2009 .

[55]  Peter J. Olver,et al.  Automatic Solution of Jigsaw Puzzles , 2013, Journal of Mathematical Imaging and Vision.

[56]  A. Hamdouni,et al.  On the accuracy of invariant numerical schemes , 2010 .

[57]  F. Valiquette Applications of Moving Frames to Lie Pseudo-Groups , 2009 .

[58]  E. Cartan La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .

[59]  A. Weinstein Groupoids: Unifying Internal and External Symmetry A Tour through Some Examples , 1996 .

[60]  P. Olver Applications of Lie Groups to Differential Equations , 1986 .

[61]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .

[62]  Anthony J. Yezzi,et al.  A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.

[63]  T. Tsujishita On variation bicomplexes associated to differential equations , 1982 .

[64]  Peter J. Olver,et al.  Extensions of Invariant Signatures for Object Recognition , 2012, Journal of Mathematical Imaging and Vision.

[65]  Peter J. Olver,et al.  Moving Frames for Lie Pseudo–Groups , 2008, Canadian Journal of Mathematics.

[66]  Ekaterina Shemyakova,et al.  Moving frames for laplace invariants , 2008, ISSAC '08.

[67]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[68]  Emilio Musso,et al.  Invariant Signatures of Closed Planar Curves , 2009, Journal of Mathematical Imaging and Vision.

[69]  Irina A. Kogan,et al.  Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..

[70]  Jesús Muñoz,et al.  On the finiteness of differential invariants , 2003 .

[71]  Michael H. Freedman,et al.  On the Mobius Energy of Knots and Unknots , 1994 .

[72]  R. Wilson The classical groups , 2009 .

[73]  B. Khesin,et al.  Integrability of higher pentagram maps , 2012, 1204.0756.

[74]  Peter J. Olver,et al.  Maurer–Cartan equations for Lie symmetry pseudogroups of differential equations , 2005 .

[75]  M. A. Akivis,et al.  Élie Cartan (1869-1951) , 2011 .

[76]  Pilwon Kim,et al.  Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .

[77]  M. Gromov Pseudo holomorphic curves in symplectic manifolds , 1985 .

[78]  Jing Ping Wang,et al.  Hamiltonian evolutions of twisted polygons in , 2012, 1207.6524.

[79]  Peter J. Olver,et al.  Symmetries and Integrability of Difference Equations , 1999 .

[80]  P. Olver The symmetry groupoid and weighted signature of a geometric object , 2016 .

[81]  Francis Valiquette,et al.  Solving Local Equivalence Problems with the Equivariant Moving Frame Method , 2013, 1304.1616.

[82]  Robert B. Gardner,et al.  The Method of Equivalence and Its Applications , 1989 .

[83]  P. Olver Classical invariant theory and the equivalence problem for particle Lagrangians , 1990 .

[84]  J. Morgan,et al.  Ricci Flow and the Poincare Conjecture , 2006, math/0607607.

[85]  Elizabeth L. Mansfield,et al.  Discrete Moving Frames and Discrete Integrable Systems , 2012, Found. Comput. Math..

[86]  Pilwon Kim,et al.  Invariantization of numerical schemes using moving frames , 2007 .

[87]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[88]  Classical Invariant Theory and the Equivalence Problem for Particle Lagrangians , 2003 .

[89]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[90]  C. Qu,et al.  Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries ? , 2013, 1301.0180.

[91]  Ismail Hakki Toroslu,et al.  Automatic reconstruction of broken 3-D surface objects , 1999, Comput. Graph..

[92]  Peter J. Olver,et al.  Differential invariant algebras of Lie pseudo-groups , 2009 .

[93]  Differential invariants of maximally symmetric submanifolds , 2008 .

[94]  Allen Tannenbaum,et al.  On the Monge-Kantorovich problem and image warping , 2003 .

[95]  Ar. Tresse,et al.  Sur les invariants différentiels des groupes continus de transformations , 1894 .

[96]  Martin D. Levine,et al.  3D part segmentation using simulated electrical charge distributions , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[97]  Hans-Paul Schwefel,et al.  A comprehensive introduction , 2002 .

[98]  Dusa McDuff,et al.  Introduction to Symplectic Topology , 1995 .

[99]  P. Olver Pseudo-Stabilization of Prolonged Group Actions I. The Order Zero Case , 1997 .

[100]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[101]  Martin D. Levine,et al.  3D Part Segmentation Using Simulated Electrical Charge Distributions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[102]  V. Lychagin,et al.  Global Lie–Tresse theorem , 2011, 1111.5480.

[103]  Elizabeth L. Mansfield,et al.  Algorithms for Symmetric Differential Systems , 2001, Found. Comput. Math..

[104]  Vyacheslav M. Boyko,et al.  Computation of Invariants of Lie Algebras by Means of Moving Frames , 2006, math-ph/0602046.

[105]  Roman G. Smirnov,et al.  An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics , 2004 .

[106]  Invariant parameterization and turbulence modeling on the beta-plane , 2011, 1112.1917.

[107]  Alfred M. Bruckstein,et al.  Scale Space and Variational Methods in Computer Vision , 2011, Lecture Notes in Computer Science.

[108]  P. Olver,et al.  Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .

[109]  P. Olver,et al.  Affine Geometry, Curve Flows, and Invariant Numerical Approximations , 1996 .

[110]  Aaron D. Ames,et al.  Three-dimensional object recognition using invariant Euclidean signature curves , 2002 .

[111]  Gary R. Jensen,et al.  Higher Order Contact of Submanifolds of Homogeneous Spaces , 1977 .

[112]  G. M. Beffa Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds , 2008 .

[113]  Gesammelte Abhandlungen , 1906, Nature.

[114]  P. Olver Symmetry groups and group invariant solutions of partial differential equations , 1979 .

[115]  V. Ovsienko,et al.  The Pentagram Map: A Discrete Integrable System , 2008, 0810.5605.

[116]  Peter J. Olver,et al.  Moving frames and differential invariants in centro-affine geometry , 2010 .

[117]  Mark L. Green,et al.  The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .

[118]  R. Howe,et al.  ON CLASSICAL INVARIANT THEORY , 2010 .

[119]  Hans Z. Munthe-Kaas,et al.  On Post-Lie Algebras, Lie–Butcher Series and Moving Frames , 2012, Found. Comput. Math..

[120]  O. Morozov Contact integrable extensions and differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation , 2012 .

[121]  Invertible Darboux Transformations , 2012, 1210.0803.

[122]  John McCleary,et al.  User's Guide to Spectral Sequences , 1985 .

[123]  Peter J. Olver,et al.  Geometric Integration via Multi-space , 2022 .

[124]  Evangelos Siminos,et al.  Continuous symmetry reduction and return maps for high-dimensional flows , 2010, 1006.2362.

[125]  Pierre-Louis Bazin,et al.  Structure from Motion: Theoretical Foundations of a Novel Approach Using Custom Built Invariants , 2002, ArXiv.

[126]  Jing Ping Wang,et al.  HAMILTONIAN EVOLUTIONS OF TWISTED POLYGONS IN RP n , 2013 .

[127]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[128]  F. Valiquette,et al.  Equivariant moving frame method and the local equivalence of uxx = r(x, u, v, ux, vx) under fiber-preserving transformations , 2011 .

[129]  The cohomology of invariant variational bicomplexes , 1995 .

[130]  P. Olver,et al.  Moving Coframes: I. A Practical Algorithm , 1998 .

[131]  E. Vessiot Sur l'intégration des systèmes différentiels qui admettent des groupes continus de transformations , 1904 .

[132]  George Labahn,et al.  Scaling Invariants and Symmetry Reduction of Dynamical Systems , 2013, Foundations of Computational Mathematics.

[133]  W. Miller,et al.  Group analysis of differential equations , 1982 .

[134]  Luc Van Gool,et al.  Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.

[135]  Luc Van Gool,et al.  Recognition of planar shapes under affine distortion , 2005, International Journal of Computer Vision.

[136]  P. Olver Equivalence, Invariants, and Symmetry: References , 1995 .

[137]  Boris Komrakov PRIMITIVE ACTIONS AND THE SOPHUS LIE PROBLEM , 1993 .

[138]  L. Gool,et al.  Semi-differential invariants , 1992 .

[139]  Kyler Siegel,et al.  Exterior Differential Systems ∗ , 2014 .

[140]  Irina A. Kogan,et al.  Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex , 2003 .

[141]  P. Olver Moving frames , 2003, J. Symb. Comput..

[142]  Marc Moreno Maza,et al.  Computation of canonical forms for ternary cubics , 2002, ISSAC '02.

[143]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[144]  Mireille Boutin On orbit dimensions under a simultaneous Lie group action on n copies of a manifold , 2000 .

[145]  Evelyne Hubert,et al.  Generation properties of Maurer-Cartan invariants , 2007 .

[146]  Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches , 2005, math-ph/0508016.

[147]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[148]  F. Valiquette,et al.  GROUP FOLIATION OF DIFFERENTIAL EQUATIONS USING MOVING FRAMES , 2015, Forum of Mathematics, Sigma.

[149]  S. Lie,et al.  Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .

[150]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[151]  P. Olver Recursive Moving Frames , 2011 .

[152]  Robert Milson,et al.  Point equivalence of second-order ODEs: Maximal invariant classification order , 2015, J. Symb. Comput..

[153]  Mireille Boutin,et al.  On reconstructing n-point configurations from the distribution of distances or areas , 2003, Adv. Appl. Math..

[154]  Peter J. Olver,et al.  Automatic Reassembly of Three-Dimensional Jigsaw Puzzles , 2016, Int. J. Image Graph..

[155]  Evelyne Hubert,et al.  Differential invariants of a Lie group action: Syzygies on a generating set , 2007, J. Symb. Comput..

[156]  G. M. Beffa Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces , 2005 .

[157]  Irina A. Kogan,et al.  Object-image correspondence for curves under central and parallel projections , 2012, SoCG '12.

[158]  Irina Berchenko,et al.  Symmetries of Polynomials , 2000, J. Symb. Comput..

[159]  G. M. Beffa Moving frames, Geometric Poisson brackets and the KdV-schwarzian evolution of pure spinors , 2011 .

[160]  Irina A. Kogan,et al.  Object-Image Correspondence for Algebraic Curves under Projections , 2013, ArXiv.

[161]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[162]  Geometric affine symplectic curve flows in R4 , 2012 .

[163]  F. Valiquette,et al.  Symmetry preserving numerical schemes for partial differential equations and their numerical tests , 2011, 1110.5921.