Modern Developments in the Theory and Applications of Moving Frames
暂无分享,去创建一个
[1] Elizabeth L. Mansfield,et al. A Practical Guide to the Invariant Calculus , 2010 .
[2] M. Grayson. The heat equation shrinks embedded plane curves to round points , 1987 .
[3] Peter J. Olver,et al. Algorithms for Differential Invariants of Symmetry Groups of Differential Equations , 2008, Found. Comput. Math..
[4] G. Carpenter. In Providence, R. I. , 1929 .
[5] Peter J. Olver,et al. Geometric Foundations of Numerical Algorithms and Symmetry , 2001, Applicable Algebra in Engineering, Communication and Computing.
[6] Phillip A. Griffiths,et al. On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry , 1974 .
[7] R. McLenaghan,et al. Equivalence problem for the orthogonal webs on the 3-sphere , 2010, 1009.4244.
[8] Olivier D. Faugeras,et al. Cartan's Moving Frame Method and Its Application to the Geometry and Evolution of Curves in the Euclidean, Affine and Projective Planes , 1993, Applications of Invariance in Computer Vision.
[9] 飛鳥 高津. Cédric Villani: Optimal Transport——Old and New, Grundlehren Math. Wiss., 338, Springer, 2009年,xxii+973ページ. , 2015 .
[10] Evelyne Hubert,et al. Rational Invariants of a Group Action , 2013 .
[11] Alfred M. Bruckstein,et al. Invariant signatures for planar shape recognition under partial occlusion , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.
[12] F. Valiquette,et al. Invariant discretization of partial differential equations admitting infinite-dimensional symmetry groups , 2014, 1401.4380.
[13] Alfred M. Bruckstein,et al. Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..
[14] Peter J. Olver,et al. Relative and Absolute Differential Invariants for Conformal Curves , 2002 .
[15] P. Olver,et al. Maurer–Cartan forms and the structure of Lie pseudo-groups , 2005 .
[16] Masatake Kuranishi. On the local theory of continuous infinite pseudo groups. I , 1959 .
[17] Peter J. Olver,et al. Joint Invariant Signatures , 2001, Found. Comput. Math..
[18] C. Villani. Optimal Transport: Old and New , 2008 .
[19] A. Grim,et al. Applications of Signatures in Diagnosing Breast Cancer , 2015 .
[20] P. Olver. Invariant submanifold flows , 2008 .
[21] Irina A. Kogan,et al. Rational invariants of a group action. Construction and rewriting , 2007, J. Symb. Comput..
[22] D. Hilbert,et al. Theory of algebraic invariants , 1993 .
[23] C. Hann,et al. Projective Curvature and Integral Invariants , 2002 .
[24] Bruno Buchberger,et al. Applications of Gröbner Bases in Non-linear Computational Geometry , 1987, Trends in Computer Algebra.
[25] E. Mansfield,et al. Moving Frames and Conservation Laws for Euclidean Invariant Lagrangians , 2011, 1106.3964.
[26] Peter J. Olver,et al. Generating differential invariants , 2007 .
[27] Alfred M. Bruckstein,et al. On differential invariants of planar curves and recognizing partially occluded planar shapes , 1995, Annals of Mathematics and Artificial Intelligence.
[28] Theory of Algebraic Invariants of Vector Spaces of Killing Tensors: Methods for Computing the Fundamental Invariants , 2004 .
[29] Steven Haker,et al. Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.
[30] Facundo Mémoli,et al. Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..
[31] Cheri Shakiban,et al. Classification of Signature Curves Using Latent Semantic Analysis , 2004, IWMM/GIAE.
[32] Mireille Boutin. Polygon Recognition and Symmetry Detection , 2003, Found. Comput. Math..
[33] Joseph Patrick Kenney. Evolution of differential invariant signatures and applications to shape recognition. , 2009 .
[34] Oleg I. Morozov,et al. Moving coframes and symmetries of differential equations , 2002 .
[35] Vyacheslav M. Boyko,et al. Invariants of solvable lie algebras with triangular nilradicals and diagonal nilindependent elements , 2007, 0706.2465.
[36] P. Olver. Recent Advances in the Theory and Application of Lie Pseudo‐Groups , 2010 .
[38] Elizabeth L. Mansfield,et al. On Moving Frames and Noether’s Conservation Laws , 2010, 1006.4660.
[39] Mireille Boutin,et al. Numerically Invariant Signature Curves , 1999, International Journal of Computer Vision.
[40] Evelyne Hubert,et al. Differential Invariants of Conformal and Projective Surfaces , 2007, 0710.0519.
[41] Peter J. Olver,et al. Differential invariants for parametrized projective surfaces , 1999 .
[42] Vladimir Itskov,et al. Orbit reduction of exterior differential systems, and group-invariant variational problems , 2000 .
[43] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[44] I. M. Singer,et al. The infinite groups of Lie and Cartan Part I, (The transitive groups) , 1965 .
[45] Invariants of pseudogroup actions: Homological methods and Finiteness theorem , 2005, math/0511711.
[46] Peter J. Olver,et al. Moving frames and singularities of prolonged group actions , 2000 .
[47] Irina A. Kogan,et al. Invariants of objects and their images under surjective maps , 2015, ArXiv.
[48] A. Kumpera,et al. Invariants differentiels d'un pseudogroupe de Lie , 1975 .
[49] Aytül Erçil,et al. A Texture Based Approach to Reconstruction of Archaeological Finds , 2005, VAST.
[50] Francis Valiquette,et al. On the Cohomology of the Invariant Euler–Lagrange Complex , 2011 .
[51] Hamid Krim,et al. Classification of Curves in 2D and 3D via Affine Integral Signatures , 2008, ArXiv.
[52] Cheri Shakiban,et al. Signature Curves Statistics of DNA Supercoils , 2004 .
[53] Martin Welk,et al. Numerical Invariantization for Morphological PDE Schemes , 2007, SSVM.
[54] P. Olver. Differential invariants of surfaces , 2009 .
[55] Peter J. Olver,et al. Automatic Solution of Jigsaw Puzzles , 2013, Journal of Mathematical Imaging and Vision.
[56] A. Hamdouni,et al. On the accuracy of invariant numerical schemes , 2010 .
[57] F. Valiquette. Applications of Moving Frames to Lie Pseudo-Groups , 2009 .
[58] E. Cartan. La méthode du repère mobile, la théorie des groupes continus et les espaces généralisés , 1935 .
[59] A. Weinstein. Groupoids: Unifying Internal and External Symmetry A Tour through Some Examples , 1996 .
[60] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[61] F. Bookstein,et al. Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .
[62] Anthony J. Yezzi,et al. A geometric snake model for segmentation of medical imagery , 1997, IEEE Transactions on Medical Imaging.
[63] T. Tsujishita. On variation bicomplexes associated to differential equations , 1982 .
[64] Peter J. Olver,et al. Extensions of Invariant Signatures for Object Recognition , 2012, Journal of Mathematical Imaging and Vision.
[65] Peter J. Olver,et al. Moving Frames for Lie Pseudo–Groups , 2008, Canadian Journal of Mathematics.
[66] Ekaterina Shemyakova,et al. Moving frames for laplace invariants , 2008, ISSAC '08.
[67] H. Piaggio. Differential Geometry of Curves and Surfaces , 1952, Nature.
[68] Emilio Musso,et al. Invariant Signatures of Closed Planar Curves , 2009, Journal of Mathematical Imaging and Vision.
[69] Irina A. Kogan,et al. Smooth and Algebraic Invariants of a Group Action: Local and Global Constructions , 2007, Found. Comput. Math..
[70] Jesús Muñoz,et al. On the finiteness of differential invariants , 2003 .
[71] Michael H. Freedman,et al. On the Mobius Energy of Knots and Unknots , 1994 .
[72] R. Wilson. The classical groups , 2009 .
[73] B. Khesin,et al. Integrability of higher pentagram maps , 2012, 1204.0756.
[74] Peter J. Olver,et al. Maurer–Cartan equations for Lie symmetry pseudogroups of differential equations , 2005 .
[75] M. A. Akivis,et al. Élie Cartan (1869-1951) , 2011 .
[76] Pilwon Kim,et al. Invariantization of the Crank Nicolson method for Burgers’ equation , 2008 .
[77] M. Gromov. Pseudo holomorphic curves in symplectic manifolds , 1985 .
[78] Jing Ping Wang,et al. Hamiltonian evolutions of twisted polygons in , 2012, 1207.6524.
[79] Peter J. Olver,et al. Symmetries and Integrability of Difference Equations , 1999 .
[80] P. Olver. The symmetry groupoid and weighted signature of a geometric object , 2016 .
[81] Francis Valiquette,et al. Solving Local Equivalence Problems with the Equivariant Moving Frame Method , 2013, 1304.1616.
[82] Robert B. Gardner,et al. The Method of Equivalence and Its Applications , 1989 .
[83] P. Olver. Classical invariant theory and the equivalence problem for particle Lagrangians , 1990 .
[84] J. Morgan,et al. Ricci Flow and the Poincare Conjecture , 2006, math/0607607.
[85] Elizabeth L. Mansfield,et al. Discrete Moving Frames and Discrete Integrable Systems , 2012, Found. Comput. Math..
[86] Pilwon Kim,et al. Invariantization of numerical schemes using moving frames , 2007 .
[87] Bruno Buchberger,et al. Applications of Gro¨bner bases in non-linear computational geometry , 1988 .
[88] Classical Invariant Theory and the Equivalence Problem for Particle Lagrangians , 2003 .
[89] P. Olver,et al. Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.
[90] C. Qu,et al. Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries ? , 2013, 1301.0180.
[91] Ismail Hakki Toroslu,et al. Automatic reconstruction of broken 3-D surface objects , 1999, Comput. Graph..
[92] Peter J. Olver,et al. Differential invariant algebras of Lie pseudo-groups , 2009 .
[93] Differential invariants of maximally symmetric submanifolds , 2008 .
[94] Allen Tannenbaum,et al. On the Monge-Kantorovich problem and image warping , 2003 .
[95] Ar. Tresse,et al. Sur les invariants différentiels des groupes continus de transformations , 1894 .
[96] Martin D. Levine,et al. 3D part segmentation using simulated electrical charge distributions , 1996, Proceedings of 13th International Conference on Pattern Recognition.
[97] Hans-Paul Schwefel,et al. A comprehensive introduction , 2002 .
[98] Dusa McDuff,et al. Introduction to Symplectic Topology , 1995 .
[99] P. Olver. Pseudo-Stabilization of Prolonged Group Actions I. The Order Zero Case , 1997 .
[100] Guillermo Sapiro,et al. A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..
[101] Martin D. Levine,et al. 3D Part Segmentation Using Simulated Electrical Charge Distributions , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[102] V. Lychagin,et al. Global Lie–Tresse theorem , 2011, 1111.5480.
[103] Elizabeth L. Mansfield,et al. Algorithms for Symmetric Differential Systems , 2001, Found. Comput. Math..
[104] Vyacheslav M. Boyko,et al. Computation of Invariants of Lie Algebras by Means of Moving Frames , 2006, math-ph/0602046.
[105] Roman G. Smirnov,et al. An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics , 2004 .
[106] Invariant parameterization and turbulence modeling on the beta-plane , 2011, 1112.1917.
[107] Alfred M. Bruckstein,et al. Scale Space and Variational Methods in Computer Vision , 2011, Lecture Notes in Computer Science.
[108] P. Olver,et al. Moving Coframes: II. Regularization and Theoretical Foundations , 1999 .
[109] P. Olver,et al. Affine Geometry, Curve Flows, and Invariant Numerical Approximations , 1996 .
[110] Aaron D. Ames,et al. Three-dimensional object recognition using invariant Euclidean signature curves , 2002 .
[111] Gary R. Jensen,et al. Higher Order Contact of Submanifolds of Homogeneous Spaces , 1977 .
[112] G. M. Beffa. Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds , 2008 .
[113] Gesammelte Abhandlungen , 1906, Nature.
[114] P. Olver. Symmetry groups and group invariant solutions of partial differential equations , 1979 .
[115] V. Ovsienko,et al. The Pentagram Map: A Discrete Integrable System , 2008, 0810.5605.
[116] Peter J. Olver,et al. Moving frames and differential invariants in centro-affine geometry , 2010 .
[117] Mark L. Green,et al. The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces , 1978 .
[118] R. Howe,et al. ON CLASSICAL INVARIANT THEORY , 2010 .
[119] Hans Z. Munthe-Kaas,et al. On Post-Lie Algebras, Lie–Butcher Series and Moving Frames , 2012, Found. Comput. Math..
[120] O. Morozov. Contact integrable extensions and differential coverings for the generalized (2 + 1)-dimensional dispersionless Dym equation , 2012 .
[121] Invertible Darboux Transformations , 2012, 1210.0803.
[122] John McCleary,et al. User's Guide to Spectral Sequences , 1985 .
[123] Peter J. Olver,et al. Geometric Integration via Multi-space , 2022 .
[124] Evangelos Siminos,et al. Continuous symmetry reduction and return maps for high-dimensional flows , 2010, 1006.2362.
[125] Pierre-Louis Bazin,et al. Structure from Motion: Theoretical Foundations of a Novel Approach Using Custom Built Invariants , 2002, ArXiv.
[126] Jing Ping Wang,et al. HAMILTONIAN EVOLUTIONS OF TWISTED POLYGONS IN RP n , 2013 .
[127] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[128] F. Valiquette,et al. Equivariant moving frame method and the local equivalence of uxx = r(x, u, v, ux, vx) under fiber-preserving transformations , 2011 .
[129] The cohomology of invariant variational bicomplexes , 1995 .
[130] P. Olver,et al. Moving Coframes: I. A Practical Algorithm , 1998 .
[131] E. Vessiot. Sur l'intégration des systèmes différentiels qui admettent des groupes continus de transformations , 1904 .
[132] George Labahn,et al. Scaling Invariants and Symmetry Reduction of Dynamical Systems , 2013, Foundations of Computational Mathematics.
[133] W. Miller,et al. Group analysis of differential equations , 1982 .
[134] Luc Van Gool,et al. Foundations of semi-differential invariants , 2005, International Journal of Computer Vision.
[135] Luc Van Gool,et al. Recognition of planar shapes under affine distortion , 2005, International Journal of Computer Vision.
[136] P. Olver. Equivalence, Invariants, and Symmetry: References , 1995 .
[137] Boris Komrakov. PRIMITIVE ACTIONS AND THE SOPHUS LIE PROBLEM , 1993 .
[138] L. Gool,et al. Semi-differential invariants , 1992 .
[139] Kyler Siegel,et al. Exterior Differential Systems ∗ , 2014 .
[140] Irina A. Kogan,et al. Invariant Euler–Lagrange Equations and the Invariant Variational Bicomplex , 2003 .
[141] P. Olver. Moving frames , 2003, J. Symb. Comput..
[142] Marc Moreno Maza,et al. Computation of canonical forms for ternary cubics , 2002, ISSAC '02.
[143] Michael E. Taylor,et al. Differential Geometry I , 1994 .
[144] Mireille Boutin. On orbit dimensions under a simultaneous Lie group action on n copies of a manifold , 2000 .
[145] Evelyne Hubert,et al. Generation properties of Maurer-Cartan invariants , 2007 .
[146] Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches , 2005, math-ph/0508016.
[147] Daniel P. Huttenlocher,et al. Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[148] F. Valiquette,et al. GROUP FOLIATION OF DIFFERENTIAL EQUATIONS USING MOVING FRAMES , 2015, Forum of Mathematics, Sigma.
[149] S. Lie,et al. Vorlesungen über continuierliche Gruppen mit geometrischen und anderen Anwendungen / Sophus Lie ; bearbeitet und herausgegeben von Georg Scheffers. , 1893 .
[150] G. Sapiro,et al. Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.
[151] P. Olver. Recursive Moving Frames , 2011 .
[152] Robert Milson,et al. Point equivalence of second-order ODEs: Maximal invariant classification order , 2015, J. Symb. Comput..
[153] Mireille Boutin,et al. On reconstructing n-point configurations from the distribution of distances or areas , 2003, Adv. Appl. Math..
[154] Peter J. Olver,et al. Automatic Reassembly of Three-Dimensional Jigsaw Puzzles , 2016, Int. J. Image Graph..
[155] Evelyne Hubert,et al. Differential invariants of a Lie group action: Syzygies on a generating set , 2007, J. Symb. Comput..
[156] G. M. Beffa. Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces , 2005 .
[157] Irina A. Kogan,et al. Object-image correspondence for curves under central and parallel projections , 2012, SoCG '12.
[158] Irina Berchenko,et al. Symmetries of Polynomials , 2000, J. Symb. Comput..
[159] G. M. Beffa. Moving frames, Geometric Poisson brackets and the KdV-schwarzian evolution of pure spinors , 2011 .
[160] Irina A. Kogan,et al. Object-Image Correspondence for Algebraic Curves under Projections , 2013, ArXiv.
[161] M. Gage,et al. The heat equation shrinking convex plane curves , 1986 .
[162] Geometric affine symplectic curve flows in R4 , 2012 .
[163] F. Valiquette,et al. Symmetry preserving numerical schemes for partial differential equations and their numerical tests , 2011, 1110.5921.