Water + 1-alkanol systems: Modeling the phase, interface and viscosity properties

Abstract In this work, we present a thermodynamic characterization of the water + 1-alkanol mixtures, including the description of phase diagrams, interfacial tension and viscosities, by the soft-SAFT equation of state coupled with the Density Gradient Theory and the Free-Volume Theory. A molecular model for water and 1-alkanols is chosen within the soft-SAFT framework with particular attention to the hydrogen-bonding interactions. The cross-association parameters are, in most cases, predicted from the Wolbach–Sandler rules, while the dispersive energy and segment diameter of the mixture are normally fitted to an isotherm/isobar of one mixture and predicted for the rest. Quantitative agreement is found in all cases, with a single set of parameters able to simultaneously describe vapor–liquid and liquid–liquid equilibria. The interfacial tension of these systems is predicted using the Density Gradient Theory without using any adjustment for the crossed influence parameter, finding good agreement with the experimental data. Finally, the viscosity of water and several 1-alkanols is described by the Free-Volume Theory, using the density as an input taken from soft-SAFT. In particular, the viscosity of the water + methanol, water + ethanol and water + 1-propanol mixtures is described with two binary viscosity parameters in order to quantitatively reproduce the viscosity maximum of those systems. The excellent agreement found for all properties represents a step forward to the extension and implementation of molecular-based equations for the accurate design of processes involving these complex mixtures with very modest computational effort.

[1]  E. Voutsas,et al.  Thermodynamic modeling of the vapor–liquid equilibrium of the water/ethanol/CO2 system , 2006 .

[2]  F. Llovell,et al.  Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data. , 2013, The journal of physical chemistry. B.

[3]  K. E. Starling,et al.  Generalized multiparameter correlation for nonpolar and polar fluid transport properties , 1988 .

[4]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[5]  K. Kojima,et al.  Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water , 1995 .

[6]  A. Pádua,et al.  Density and Viscosity of Mixtures of n-Hexane and 1-Hexanol from 303 to 423 K up to 50 MPa , 2002 .

[7]  M. Wertheim,et al.  Fluids with highly directional attractive forces. II. Thermodynamic perturbation theory and integral equations , 1984 .

[8]  M. Michelsen,et al.  Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters , 2007 .

[9]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[10]  R. Lugo,et al.  Modeling Liquid–Liquid and Liquid–Vapor Equilibria of Binary Systems Containing Water with an Alkane, an Aromatic Hydrocarbon, an Alcohol or a Gas (Methane, Ethane, CO2 or H2S), Using Group Contribution Polar Perturbed-Chain Statistical Associating Fluid Theory , 2011 .

[11]  R. A. Aziz,et al.  Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s)* for the Lennard‐Jones (12–6) Potential , 1972 .

[12]  A. Galindo,et al.  High-temperature vapour–liquid equilibrium for the water–alcohol systems and modeling with SAFT-VR: 1. Water–ethanol , 2013 .

[13]  Isaac C. Sanchez,et al.  Interfacial tension theory of low and high molecular weight liquid mixtures , 1981 .

[14]  T. Makita,et al.  Viscosities of six 1-Alkanols at temperatures in the range 298–348 K and pressures up to 200 MPa , 1989 .

[15]  P. Englezos,et al.  Prediction of vapor–liquid equilibrium in water–alcohol–hydrocarbon systems with the dipolar perturbed-chain SAFT equation of state , 2008 .

[16]  Yoshiaki Tanaka,et al.  Viscosity of (water + alcohol) mixtures under high pressure , 1987 .

[17]  C. Schwarz,et al.  New association scheme for 1-alcohols in alcohol/water mixtures with sPC-SAFT: The 2C association scheme , 2011 .

[18]  J. A. Lopes-da-Silva,et al.  Surface tension of binary mixtures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids: experimental measurements and soft-SAFT modeling. , 2012, The journal of physical chemistry. B.

[19]  M. Michelsen,et al.  Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 2. Cross-Associating and Multicomponent Systems , 2006 .

[20]  Fèlix Llovell,et al.  Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. , 2006, The journal of physical chemistry. B.

[21]  S. Ellis,et al.  A New Equilibrium Still for the Study of Partially Miscible Systems , 1960 .

[22]  Arthur K. Doolittle,et al.  Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free‐Space , 1951 .

[23]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[24]  F. Llovell,et al.  Modeling complex associating mixtures with [Cn-mim][Tf2N] ionic liquids: predictions from the soft-SAFT equation. , 2011, The journal of physical chemistry. B.

[25]  M. Góral,et al.  Recommended Liquid-Liquid Equilibrium Data. Part 4. 1-Alkanol-Water Systems , 2006 .

[26]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[27]  A. Allal,et al.  Free-volume viscosity model for fluids in the dense and gaseous states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Claire S. Adjiman,et al.  Modeling the Fluid Phase Behavior of Carbon Dioxide in Aqueous Solutions of Monoethanolamine Using Transferable Parameters with the SAFT-VR Approach , 2010 .

[29]  A. Galindo,et al.  High-temperature vapour–liquid equilibrium for the (water + alcohol) systems and modelling with SAFT-VR: 2. Water-1-propanol , 2013 .

[30]  F. Llovell,et al.  Capturing the solubility minima of n-alkanes in water by soft-SAFT. , 2009, The journal of physical chemistry. B.

[31]  Lourdes F. Vega,et al.  Thermodynamic Modeling of Imidazolium-Based Ionic Liquids with the [PF6]− Anion for Separation Purposes , 2012 .

[32]  G. Kontogeorgis,et al.  Multicomponent phase equilibrium calculations for water–methanol–alkane mixtures , 1999 .

[33]  M. Wertheim,et al.  Fluids with highly directional attractive forces. IV. Equilibrium polymerization , 1986 .

[34]  Sugata P. Tan,et al.  Generalized Procedure for Estimating the Fractions of Nonbonded Associating Molecules and Their Derivatives in Thermodynamic Perturbation Theory , 2004 .

[35]  M. Wertheim,et al.  Fluids with highly directional attractive forces. III. Multiple attraction sites , 1986 .

[36]  Lourdes F. Vega,et al.  THERMODYNAMIC BEHAVIOUR OF HOMONUCLEAR AND HETERONUCLEAR LENNARD-JONES CHAINS WITH ASSOCIATION SITES FROM SIMULATION AND THEORY , 1997 .

[37]  S. Sandler,et al.  Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures , 1998 .

[38]  Marc J. Assael,et al.  Measurements of the viscosity of alcohols in the temperature range 290–340 K at pressures up to 30 MPa , 1994 .

[39]  F. Llovell,et al.  Phase equilibria, surface tensions and heat capacities of hydrofluorocarbons and their mixtures including the critical region , 2010 .

[40]  E. Voutsas,et al.  Prediction of phase equilibria in water/alcohol/alkane systems , 1999 .

[41]  Molecular modeling of interfacial properties of industrial relevant fluids , 2014 .

[42]  S. Sandler,et al.  A Simplified SAFT Equation of State for Associating Compounds and Mixtures , 1995 .

[43]  Lourdes F. Vega,et al.  Direct calculation of interfacial properties of fluids close to the critical region by a molecular-b , 2011 .

[44]  I. Marrucho,et al.  Thermodynamic characterization of pure perfluoroalkanes, including interfacial and second order derivative properties, using the crossover soft-SAFT EoS , 2009 .

[45]  C. Wilke A Viscosity Equation for Gas Mixtures , 1950 .

[46]  Fèlix Llovell,et al.  Prediction of thermodynamic derivative properties of pure fluids through the Soft-SAFT equation of state. , 2006, The journal of physical chemistry. B.

[47]  F. García-Sánchez,et al.  An equation-of-state-based viscosity model for non-ideal liquid mixtures☆ , 2003 .

[48]  A. Allal,et al.  A New Free Volume Model for Dynamic Viscosity and Density of Dense Fluids Versus Pressure and Temperature , 2001 .

[49]  M. Wertheim,et al.  Fluids with highly directional attractive forces. I. Statistical thermodynamics , 1984 .

[50]  P. Englezos,et al.  Vapor–liquid equilibrium of systems containing alcohols, water, carbon dioxide and hydrocarbons using SAFT , 2004 .

[51]  健二 越智,et al.  2液相をつくる水~n-アミルアルコール, 水~イソアミルアルコール系の定圧気液平衡 , 1984 .

[52]  Estrella Alvarez,et al.  Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C , 1995 .

[53]  L. Scriven,et al.  Stress and Structure in Fluid Interfaces , 2007 .

[54]  Stanley H. Huang,et al.  Equation of state for small, large, polydisperse, and associating molecules , 1990 .

[55]  Azeotropic Behavior of a Water + n-Propanol + Cyclohexane Mixture Using Cyclohexane as an Entrainer for Separating the Water + n-Proponal Mixture at 760 mmHg , 2003 .

[56]  F. Llovell,et al.  Transport properties of mixtures by the soft-SAFT + free-volume theory: application to mixtures of n-alkanes and hydrofluorocarbons. , 2013, The journal of physical chemistry. B.

[57]  C. M. Hull,et al.  Vapor-Liquid Equilibria and Boiling-Point Composition Relations for Systems n-Butanol–Water and Isobutanol–Water1,2 , 1931 .

[58]  S. Enders,et al.  Interfacial properties of water + alcohol mixtures , 2008 .

[59]  J. Coutinho,et al.  Modeling the [NTf2] pyridinium ionic liquids family and their mixtures with the soft statistical associating fluid theory equation of state. , 2012, The journal of physical chemistry. B.

[60]  Andrew J. Haslam,et al.  Developing optimal Wertheim-like models of water for use in Statistical Associating Fluid Theory (SAFT) and related approaches , 2006 .

[61]  Lourdes F. Vega,et al.  Prediction of Binary and Ternary Diagrams Using the Statistical Associating Fluid Theory (SAFT) Equation of State , 1998 .