Learning Deep Non-blind Image Deconvolution Without Ground Truths

[1]  Hui Ji,et al.  Supplementary Materials for “Self-supervised Deep Image Restoration via Adaptive Stochastic Gradient Langevin Dynamics” , 2022 .

[2]  Hui Ji,et al.  Nonblind Image Deconvolution via Leveraging Model Uncertainty in An Untrained Deep Neural Network , 2022, International Journal of Computer Vision.

[3]  Yuhui Quan,et al.  Recorrupted-to-Recorrupted: Unsupervised Deep Learning for Image Denoising , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  B. Schiele,et al.  Learning Spatially-Variant MAP Models for Non-blind Image Deblurring , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Mike E. Davies,et al.  Equivariant Imaging: Learning Beyond the Range Space , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Tom Tirer,et al.  BP-DIP: A Backprojection based Deep Image Prior , 2020, 2020 28th European Signal Processing Conference (EUSIPCO).

[7]  Stefan Roth,et al.  Deep Wiener Deconvolution: Wiener Meets Deep Learning for Image Deblurring , 2021, NeurIPS.

[8]  J. Ponce,et al.  End-to-end Interpretable Learning of Non-blind Image Deblurring , 2020, ECCV.

[9]  Hui Ji,et al.  Deep Learning for Handling Kernel/model Uncertainty in Image Deconvolution , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Yuhui Quan,et al.  Variational-EM-Based Deep Learning for Noise-Blind Image Deblurring , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  K. Batenburg,et al.  Noise2Inverse: Self-Supervised Deep Convolutional Denoising for Tomography , 2020, IEEE Transactions on Computational Imaging.

[12]  Stamatios Lefkimmiatis,et al.  Microscopy Image Restoration with Deep Wiener-Kolmogorov filters , 2019, ECCV.

[13]  Jong Chul Ye,et al.  CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry , 2019, IEEE Transactions on Computational Imaging.

[14]  Yuhui Quan,et al.  Self-supervised Bayesian Deep Learning for Image Recovery with Applications to Compressive Sensing , 2020, ECCV.

[15]  Hakan Bilen,et al.  Image Deconvolution with Deep Image and Kernel Priors , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[16]  Zhihao Xia,et al.  Training Image Estimators without Image Ground-Truth , 2019, NeurIPS.

[17]  Yide Zhang,et al.  A Poisson-Gaussian Denoising Dataset With Real Fluorescence Microscopy Images , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Guangming Shi,et al.  Denoising Prior Driven Deep Neural Network for Image Restoration , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Mirabela Rusu,et al.  A deep learning-based algorithm for 2-D cell segmentation in microscopy images , 2018, BMC Bioinformatics.

[20]  A. N. Rajagopalan,et al.  Non-blind Deblurring: Handling Kernel Uncertainty with CNNs , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[21]  Se Young Chun,et al.  Training Deep Learning based Denoisers without Ground Truth Data , 2018, NeurIPS.

[22]  Wei Liu,et al.  Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation , 2018, NeurIPS.

[23]  David Zhang,et al.  Partial Deconvolution With Inaccurate Blur Kernel , 2018, IEEE Transactions on Image Processing.

[24]  Carsten Rother,et al.  Learning to Push the Limits of Efficient FFT-Based Image Deconvolution , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[25]  Matthias Zwicker,et al.  Deep Mean-Shift Priors for Image Restoration , 2017, NIPS.

[26]  Stefan Roth,et al.  Noise-Blind Image Deblurring , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Wangmeng Zuo,et al.  Learning Deep CNN Denoiser Prior for Image Restoration , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Michael Möller,et al.  Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[29]  Rynson W. H. Lau,et al.  Learning Fully Convolutional Networks for Iterative Non-blind Deconvolution , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Stephen Becker,et al.  Efficient Adjoint Computation for Wavelet and Convolution Operators [Lecture Notes] , 2016, IEEE Signal Processing Magazine.

[31]  Deqing Sun,et al.  Blind Image Deblurring Using Dark Channel Prior , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Narendra Ahuja,et al.  A Comparative Study for Single Image Blind Deblurring , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Sebastian Nowozin,et al.  Cascades of Regression Tree Fields for Image Restoration , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Guangyong Chen,et al.  An Efficient Statistical Method for Image Noise Level Estimation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[35]  David Zhang,et al.  Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[36]  Zuowei Shen,et al.  Data-Driven Multi-scale Non-local Wavelet Frame Construction and Image Recovery , 2014, Journal of Scientific Computing.

[37]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[38]  Michal Irani,et al.  Blind Deblurring Using Internal Patch Recurrence , 2014, ECCV.

[39]  Daniele Perrone,et al.  Total Variation Blind Deconvolution: The Devil Is in the Details , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Ming-Hsuan Yang,et al.  Deblurring Text Images via L0-Regularized Intensity and Gradient Prior , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Sunghyun Cho,et al.  Edge-based blur kernel estimation using patch priors , 2013, IEEE International Conference on Computational Photography (ICCP).

[43]  Lei Zhang,et al.  Nonlocally Centralized Sparse Representation for Image Restoration , 2013, IEEE Transactions on Image Processing.

[44]  Kang Wang,et al.  Robust Image Deblurring With an Inaccurate Blur Kernel , 2012, IEEE Transactions on Image Processing.

[45]  Andrew Zisserman,et al.  Deblurring Shaken and Partially Saturated Images , 2011, International Journal of Computer Vision.

[46]  Qionghai Dai,et al.  Exploring aligned complementary image pair for blind motion deblurring , 2011, CVPR 2011.

[47]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[48]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[50]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[51]  Seungyong Lee,et al.  Fast motion deblurring , 2009, ACM Trans. Graph..

[52]  Jian-Feng Cai,et al.  High-quality curvelet-based motion deblurring from an image pair , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[54]  Shree K. Nayar,et al.  Motion-based motion deblurring , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.