Assessing the Occurrence Pattern of Large Ionospheric TEC Gradients over the Brazilian Airspace: Ionospheric Gradients over Brazilian Airspace

We investigate the occurrence pattern of equatorial plasma bubbles and the corresponding ionospheric gradients over a section of the Brazilian airspace in 2014/2015. The GPS-derived total electron content (TEC) data from a chain of receiver stations were used in this study to compute the TEC gradients along the southern crest of the equatorial ionospheric anomaly region over Brazil. Here, we present a few illustrative examples to delineate the general qualitative features of equatorial plasma bubbles in this region, and the varying degree of TEC gradient magnitudes associated with these bubbles. We also inferred the overall probability distribution function of the computed TEC gradient magnitudes in this region, which extend up to 1000 mm/km at the GPS L1 frequency. Copyright © 2016 Institute of Navigation.

[1]  R. Tsunoda,et al.  Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity , 1985 .

[2]  Per Enge,et al.  Ionospheric Threat Parameterization for Local Area Global-Positioning-System-Based Aircraft Landing Systems , 2010 .

[3]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[4]  G. Haerendel Theory of Equatorial Spread F , 1973 .

[5]  S. Ossakow Spread-F theories—a review , 1981 .

[6]  Ronald F. Woodman,et al.  Radar observations of F region equatorial irregularities , 1976 .

[7]  Paul M. Kintner,et al.  GPS and ionospheric scintillations , 2007 .

[8]  Alexander Yarovoy,et al.  Capacitevely loaded bowtie antenna for ultrawideband impulse radio , 2006 .

[9]  Kevin S. Paulson,et al.  Simulation of rain fade on arbitrary microwave link networks by the downscaling and interpolation of rain radar data , 2009 .

[10]  Xiaoqing Pi,et al.  Monitoring of global ionospheric irregularities using the Worldwide GPS Network , 1997 .

[11]  Jaume Sanz,et al.  Wide Area RTK: A satellite navigation system based on precise real‐time ionospheric modelling , 2012 .

[12]  W. J. Burke,et al.  A climatology of equatorial plasma bubbles from DMSP 1989–2004 , 2006 .

[13]  H. Booker,et al.  Scattering of radio waves by the F-region of the ionosphere , 1938 .

[14]  Per Enge,et al.  Observations of low‐elevation ionospheric anomalies for ground‐based augmentation of GNSS , 2011 .

[15]  E. Ott Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere , 1978 .

[16]  Y. Liou,et al.  Improvement of retrieved FORMOSAT‐3/COSMIC electron densities validated by ionospheric sounder measurements at Jicamarca , 2011 .

[17]  S. Basu,et al.  C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground‐based diagnostics in October 2008 , 2011 .

[18]  J. Retterer,et al.  Faith in a seed: on the origins of equatorial plasma bubbles , 2014 .

[19]  Per Enge,et al.  Impact and mitigation of ionospheric anomalies on ground‐based augmentation of GNSS , 2009 .

[20]  Keith M. Groves,et al.  A comparison of TEC fluctuations and scintillations at Ascension Island , 1999 .

[21]  R. Yantosca,et al.  GPS phase fluctuations in the equatorial region during the MISETA 1994 campaign , 1996 .

[22]  E. Ott,et al.  Two‐dimensional turbulence in equatorial spread F , 1978 .

[23]  A. Robock,et al.  High‐latitude eruptions cast shadow over the African monsoon and the flow of the Nile , 2006 .

[24]  T. Tamura,et al.  Numerical study of winter water formation in the Chukchi Sea: Roles and impacts of coastal polynyas , 2011 .

[25]  Takashi Maruyama,et al.  A super bubble detected by dense GPS network at east Asian longitudes , 2006 .

[26]  Jiyun Lee,et al.  Assessment of Nominal Ionosphere Spatial Decorrelation for LAAS , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[27]  Jiyun Lee,et al.  Long-term ionospheric anomaly monitoring for ground based augmentation systems , 2012 .