A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws

In this paper, we investigate the coupling of the Multi-dimensional Optimal Order De- tection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions with a posteriori detection and polynomial degree decre- menting processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but it also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic par- tial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements.

[1]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[2]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[3]  Chi-Wang Shu,et al.  A technique of treating negative weights in WENO schemes , 2000 .

[4]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[5]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[7]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[8]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[9]  INFN,et al.  The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2005, Journal of Fluid Mechanics.

[10]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[11]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[12]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[13]  J. Michael Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .

[14]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[15]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[16]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[17]  J. M. Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .

[18]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[19]  Tiegang Liu,et al.  A note on the conservative schemes for the Euler equations , 2006, J. Comput. Phys..

[20]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[21]  Nikolaus A. Adams,et al.  Positivity-preserving method for high-order conservative schemes solving compressible Euler equations , 2013, J. Comput. Phys..

[22]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[23]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[24]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[25]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[26]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[27]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[28]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[29]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[30]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[31]  Harold L. Atkins,et al.  A Finite-Volume High-Order ENO Scheme for Two-Dimensional Hyperbolic Systems , 1993 .

[32]  Pekka Janhunen,et al.  HLLC solver for ideal relativistic MHD , 2007, J. Comput. Phys..

[33]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[34]  Oscar Reula,et al.  Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas , 2008, 0810.1838.

[35]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[36]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[37]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[38]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[39]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[40]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[41]  Vincent Mousseau,et al.  A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids , 2010, J. Comput. Phys..

[42]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[43]  Michael Dumbser,et al.  Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..

[44]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[45]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[46]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[47]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[48]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[49]  Eleuterio F. Toro,et al.  ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions , 2005 .

[50]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[51]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[52]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[53]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[54]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[55]  Michael Dumbser,et al.  Fast high order ADER schemes for linear hyperbolic equations , 2004 .

[56]  David J. Benson,et al.  Momentum advection on a staggered mesh , 1992 .

[57]  Xiangxiong Zhang,et al.  Positivity-preserving high order finite difference WENO schemes for compressible Euler equations , 2012, J. Comput. Phys..

[58]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[59]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[60]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[61]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[62]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[63]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[64]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[65]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[66]  Hong Luo,et al.  A Reconstructed Discontinuous Galerkin Method Based on a Hierarchical Hermite WENO Reconstruction for Compressible Flows on Tetrahedral Grids , 2012 .

[67]  Eleuterio F. Toro,et al.  ADER finite volume schemes for nonlinear reaction--diffusion equations , 2009 .

[68]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[69]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[70]  Chi-Wang Shu,et al.  Finite Difference WENO Schemes with Lax-Wendroff-Type Time Discretizations , 2002, SIAM J. Sci. Comput..

[71]  L. Rezzolla,et al.  An improved exact Riemann solver for relativistic hydrodynamics , 2001, Journal of Fluid Mechanics.

[72]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[73]  Jay P. Boris,et al.  Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .

[74]  Arne Taube,et al.  Arbitrary High-Order Discontinuous Galerkin Schemes for the Magnetohydrodynamic Equations , 2007, J. Sci. Comput..

[75]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[76]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[77]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[78]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[79]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[80]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[81]  B R U N O G I A C O M A Z Z O,et al.  Under consideration for publication in J. Fluid Mech. 1 The Exact Solution of the Riemann Problem in Relativistic MHD , 2008 .

[82]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[83]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[84]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[85]  Phillip Colella,et al.  A limiter for PPM that preserves accuracy at smooth extrema , 2008, J. Comput. Phys..

[86]  Raphaël Loubère,et al.  A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods , 2005 .

[87]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[88]  Jon Reisner,et al.  A space-time smooth artificial viscosity method for nonlinear conservation laws , 2012, J. Comput. Phys..

[89]  Michael Dumbser,et al.  Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors , 2011, J. Comput. Phys..

[90]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[91]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[92]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[93]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .