Studying Balanced Allocations with Differential Equations

Using differential equations, we examine the GREEDY algorithm studied by Azar, Broder, Karlin and Upfal for distributed load balancing [1]. This approach yields accurate estimates of the actual load distribution, provides insight into the exponential improvement GREEDY offers over simple random selection, and allows one to prove tight concentration theorems about the loads in a straightforward manner.

[1]  R. L. Dobrushin,et al.  Queueing system with selection of the shortest of two queues: an assymptotic approach , 1996 .

[2]  Eli Upfal,et al.  Balanced allocations (extended abstract) , 1994, STOC '94.

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  Michael Molloy,et al.  The analysis of a list-coloring algorithm on a random graph , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  Eli Upfal,et al.  Balanced Allocations , 1999, SIAM J. Comput..

[6]  N. Wormald Differential Equations for Random Processes and Random Graphs , 1995 .

[7]  Gaston H. Gonnet,et al.  Expected Length of the Longest Probe Sequence in Hash Code Searching , 1981, JACM.

[8]  Artur Czumaj,et al.  Randomized allocation processes , 2001, Random Struct. Algorithms.

[9]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[10]  Michael Mitzenmacher,et al.  Load balancing and density dependent jump Markov processes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[11]  Daniel A. Spielman,et al.  Practical loss-resilient codes , 1997, STOC '97.

[12]  Volker Stemann,et al.  Parallel balanced allocations , 1996, SPAA '96.

[13]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[14]  Edward D. Lazowska,et al.  Adaptive load sharing in homogeneous distributed systems , 1986, IEEE Transactions on Software Engineering.

[15]  T. Kurtz Approximation of Population Processes , 1987 .

[16]  B. Hajek Asymptotic analysis of an assignment problem arising in a distributed communications protocol , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[17]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[18]  Friedhelm Meyer auf der Heide,et al.  Efficient PRAM simulation on a distributed memory machine , 1992, STOC '92.

[19]  Michel Mandjes,et al.  Large Deviations for Performance Analysis: Queues, Communications, and Computing , Adam Shwartz and Alan Weiss (New York: Chapman and Hall, 1995). , 1996, Probability in the Engineering and Informational Sciences.

[20]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[21]  李幼升,et al.  Ph , 1989 .

[22]  T. Kurtz Solutions of ordinary differential equations as limits of pure jump markov processes , 1970, Journal of Applied Probability.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Michael Mitzenmacher,et al.  The Power of Two Choices in Randomized Load Balancing , 2001, IEEE Trans. Parallel Distributed Syst..

[25]  Bruce E. Hajek,et al.  Analysis of Simple Algorithms for Dynamic Load Balancing , 1997, Math. Oper. Res..