Efficient microwave to optical photon conversion: an electro-optical realization

Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme, this is impossible because both up- and down-converted sidebands are necessarily present. Here, we demonstrate true single-sideband up- or down-conversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a 3 orders of magnitude improvement of the electro-optical conversion efficiency, reaching 0.1% photon number conversion for a 10 GHz microwave tone at 0.42 mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for nonclassical state conversion and communication. Our conversion bandwidth is larger than 1 MHz and is not fundamentally limited.

[1]  J. Longdell,et al.  Coherent frequency up-conversion of microwaves to the optical telecommunications band in an Er:YSO crystal , 2015, 1501.02014.

[2]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[3]  Thomas Purdy,et al.  Bidirectional and efficient conversion between microwave and optical light , 2014 .

[4]  Alexandre Blais,et al.  Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors , 2011 .

[5]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[6]  S. L. Rolston,et al.  Atomic interface between microwave and optical photons , 2011, 1110.3537.

[7]  J. Wiersig Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. , 2006, Physical review letters.

[8]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[9]  Mani Hossein-Zadeh,et al.  Microphotonic modulator for microwave receiver , 2001 .

[10]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[11]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[12]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[13]  M. Tobar,et al.  Single-photon level study of microwave properties of lithium niobate at millikelvin temperatures , 2015, 1504.07352.

[14]  Florian Sedlmeir,et al.  Interfacing transitions of different alkali atoms and telecom bands using one narrowband photon pair source , 2015, 1505.06141.

[15]  A. Luiten,et al.  Mode-interactions and polarization conversion in a crystalline microresonator. , 2015, Optics letters.

[16]  Yu-Hui Chen,et al.  Magneto-optic modulator with unit quantum efficiency. , 2014, Physical review letters.

[17]  A. Matsko,et al.  Parametric oscillations in a whispering gallery resonator. , 2007, Optics letters.

[18]  A. Matsko,et al.  Tunable optical single-sideband modulator with complete sideband suppression. , 2009, Optics letters.

[19]  Tan Min Pau,et al.  Genetic structure of the snakehead murrel, Channa striata (channidae) based on the cytochrome c oxidase subunit I gene: Influence of historical and geomorphological factors , 2011, Genetics and molecular biology.

[20]  M. Wood,et al.  Hybrid silicon and lithium niobate electro-optical ring modulator , 2014 .

[21]  Quantum state transfer in cavity electro-optic modulators , 2015 .

[22]  M. Tsang Cavity quantum electro-optics , 2010, 1003.0116.

[23]  Schlarb,et al.  Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. , 1994, Physical review. B, Condensed matter.

[24]  S. Schmid,et al.  Optical detection of radio waves through a nanomechanical transducer , 2013, Nature.

[25]  Vladimir S. Ilchenko,et al.  Whispering-gallery-mode electro-optic modulator and photonic microwave receiver , 2003 .

[26]  A. Matsko,et al.  Microwave whispering gallery resonator for efficient optical up-conversion , 2009, 0905.2961.

[27]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[28]  B. Sturman,et al.  Whispering gallery modes at the rim of an axisymmetric optical resonator: analytical versus numerical description and comparison with experiment. , 2013, Optics express.

[29]  K. Vahala,et al.  Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. , 2008, Physical review letters.

[30]  M. Gorodetsky,et al.  Modeling the whispering gallery microresonator-based optical modulator. , 2015, Applied Optics.

[31]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[32]  Tobias J. Kippenberg,et al.  On-chip microwave-to-optical quantum coherent converter based on a superconducting resonator coupled to an electro-optic microresonator , 2015, 1512.06442.

[33]  L. Maleki,et al.  Ultra high Q crystalline microcavities , 2005, International Quantum Electronics Conference, 2005..

[34]  Andrey B. Matsko,et al.  Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator. , 2009, Optics letters.

[35]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[36]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[37]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[38]  Mankei Tsang,et al.  Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields , 2011, 1105.2336.

[39]  R. W. Andrews,et al.  Quantum-enabled temporal and spectral mode conversion of microwave signals , 2015, Nature Communications.

[40]  Inspec,et al.  Properties of lithium niobate , 1989 .

[41]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[42]  K. Vahala,et al.  Sideband spectroscopy and dispersion measurement in microcavities. , 2012, Optics express.

[43]  K. Buse,et al.  Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range. , 2015, Optics express.

[44]  M. Lipson,et al.  Strong polarization mode coupling in microresonators. , 2014, Optics letters.