Hamiltonian powers in threshold and arborescent comparability graphs
暂无分享,去创建一个
[1] Jitender S. Deogun,et al. 1-Tough cocomparability graphs are hamiltonian , 1997, Discret. Math..
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] N. Mahadev,et al. Threshold graphs and related topics , 1995 .
[4] George Steiner,et al. Polynomial Algorithms for Hamiltonian Cycle in Cocomparability Graphs , 1994, SIAM J. Comput..
[5] Dennis M. Healy,et al. Scheduling Dyadic Intervals , 1995, Discret. Appl. Math..
[6] Garth Isaak. Powers of Hamiltonian paths in interval graphs , 1998 .
[7] P. Hammer,et al. Aggregation of inequalities in integer programming. , 1975 .
[8] Vasek Chvátal,et al. Tough graphs and hamiltonian circuits , 1973, Discret. Math..
[9] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[10] Edward F. Schmeichel,et al. Toughness and Triangle-Free Graphs , 1995, J. Comb. Theory, Ser. B.
[11] D. Kratsch,et al. Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm , 1991 .
[12] Nadimpalli V. R. Mahadev,et al. Longest cycles in threshold graphs , 1994, Discret. Math..
[13] D. West. Introduction to Graph Theory , 1995 .
[14] Derek G. Corneil,et al. Complement reducible graphs , 1981, Discret. Appl. Math..
[15] Dieter Kratsch,et al. Toughness, hamiltonicity and split graphs , 1996, Discret. Math..
[16] P. Duchet. Classical Perfect Graphs: An introduction with emphasis on triangulated and interval graphs , 1984 .