Visibility Based Preconditioning for bundle adjustment

We present Visibility Based Preconditioning (VBP) a new technique for efficiently solving the linear least squares problems that arise in bundle adjustment (Triggs et al., 1999). Using the camera-point visibility structure of the scene, we describe the construction of two preconditioners. These preconditioners when combined with an inexact step Levenberg-Marquardt algorithm (Wright and Holt, 1985) offer state of the art performance on the BAL data set (Agarwal et al., 2010), with 3-5× reduction in execution time over currently available methods while delivering comparable or better solution quality.

[1]  Frank Dellaert,et al.  Subgraph-preconditioned conjugate gradients for large scale SLAM , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  David Nister,et al.  Bundle Adjustment Rules , 2006 .

[3]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[4]  Richard Szeliski,et al.  Pushing the Envelope of Modern Methods for Bundle Adjustment , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Frank Dellaert,et al.  Generalized subgraph preconditioners for large-scale bundle adjustment , 2011, Vision.

[6]  Stephen J. Wright,et al.  An inexact Levenberg-Marquardt method for large sparse nonlinear least squres , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[7]  Frank Dellaert,et al.  Out-of-Core Bundle Adjustment for Large-Scale 3D Reconstruction , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[9]  Richard Szeliski,et al.  Bundle Adjustment in the Large , 2010, ECCV.

[10]  Irfan A. Essa,et al.  Propagation of innovative information in non-linear least-squares structure from motion , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[11]  S. Nash,et al.  Assessing a search direction within a truncated-newton method , 1990 .

[12]  Manolis I. A. Lourakis,et al.  SBA: A software package for generic sparse bundle adjustment , 2009, TOMS.

[13]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[14]  Jan-Michael Frahm,et al.  Building Rome on a Cloudless Day , 2010, ECCV.

[15]  Steven M. Seitz,et al.  Multicore bundle adjustment , 2011, CVPR 2011.

[16]  Jan-Michael Frahm,et al.  Modeling and Recognition of Landmark Image Collections Using Iconic Scene Graphs , 2008, International Journal of Computer Vision.

[17]  Norman E. Gibbs,et al.  A Comparison of Several Bandwidth and Profile Reduction Algorithms , 1976, TOMS.

[18]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[19]  Patrick H. Worley,et al.  Algorithm 888: Spherical Harmonic Transform Algorithms , 2008, TOMS.

[20]  Manolis I. A. Lourakis,et al.  Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[21]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[22]  Richard Szeliski,et al.  Building Rome in a day , 2009, ICCV.

[23]  Michel Dhome,et al.  Generic and real-time structure from motion using local bundle adjustment , 2009, Image Vis. Comput..

[24]  Martin Byröd,et al.  Bundle Adjustment using Conjugate Gradients with Multiscale Preconditioning , 2009, BMVC.

[25]  Frank Dellaert,et al.  Spectral partitioning for structure from motion , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[26]  Steven M. Seitz,et al.  Scene Summarization for Online Image Collections , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[27]  Richard Szeliski,et al.  Skeletal graphs for efficient structure from motion , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.