Numerical calculations accuracy comparison of the Inverse Laplace Transform algorithms for solutions of fractional order differential equations

In the paper we present results of a numerical experiment in which we evaluate and compare some numerical algorithms of the Inverse Laplace Transform for inversion accuracy of some fractional order differential equations solutions. The algorithms represent diverse lines of approach to the subject of the numerical inversion and include methods by Stehfest, Abate and Whitt, Vlach and Singhai, De Hoog, Talbot, Zakian and a one in which the FFT is applied for Fourier series convergence acceleration. We used C++ and Python languages and applied arbitrary precision mathematical libraries to address some crucial issues of an numerical implementation. Introductory test set includes Laplace transforms which are considered as difficult to compute as well as some others commonly applied in fractional calculus. In the main part of the evaluation, there is assessed accuracy of the numerical Inverse Laplace Transform of some popular fractional differential equations solutions, e.g., the initial value problem in case of the inhomogeneous Bagley–Torvik equation and composite fractional oscillation equation. Evaluation results enable to conclude that the Talbot method which involves deformed Bromwich contour integration, the De Hoog and the Abate and Whitt methods which use Fourier series expansion with accelerated convergence provide the most accurate inversions. They can be applied to a wide variety of inversion problems.

[1]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[2]  Almerico Murli,et al.  Algorithm 682: Talbot's method of the Laplace inversion problems , 1990, TOMS.

[3]  Ali H. Bhrawy,et al.  A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation , 2015, Numerical Algorithms.

[4]  Clara Ionescu,et al.  Fractional dynamics and its applications , 2015 .

[5]  Harvey Dubner,et al.  Numerical Inversion of Laplace Transforms by Relating Them to the Finite Fourier Cosine Transform , 1968, JACM.

[6]  Charles L. Epstein,et al.  The Bad Truth about Laplace's Transform , 2008, SIAM Rev..

[7]  Ward Whitt,et al.  The Fourier-series method for inverting transforms of probability distributions , 1992, Queueing Syst. Theory Appl..

[8]  Dumitru Baleanu,et al.  Discrete fractional diffusion equation , 2015, Nonlinear Dynamics.

[9]  Trifce Sandev,et al.  Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions , 2013 .

[10]  Ward Whitt,et al.  Computing Laplace Transforms for Numerical Inversion Via Continued Fractions , 1999, INFORMS J. Comput..

[11]  Fitiavana Anjara,et al.  Solution of General Fractional Oscillation Relaxation Equation by Adomian's Method , 2014 .

[12]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[13]  A. M. Cohen Numerical Methods for Laplace Transform Inversion , 2007 .

[14]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[15]  H. Villinger Solving cylindrical geothermal problems using the Gaver‐Stehfest inverse Laplace transform , 1985 .

[16]  M. Rivero,et al.  Fractional calculus: A survey of useful formulas , 2013, The European Physical Journal Special Topics.

[17]  David J. Jeffrey,et al.  Software Implementation of Numerical Algorithms in Arbitrary Precision , 2013, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[18]  William T. Weeks,et al.  Numerical Inversion of Laplace Transforms Using Laguerre Functions , 1966, JACM.

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  Ali H. Bhrawy,et al.  A review of operational matrices and spectral techniques for fractional calculus , 2015 .

[21]  Mark M. Meerschaert,et al.  Stochastic solutions for fractional wave equations , 2015, Nonlinear dynamics.

[22]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[23]  Quanrong Wang,et al.  On different numerical inverse Laplace methods for solute transport problems , 2015 .

[24]  V. Zakian Solution of homogeneous ordinary linear differential systems by numerical inversion of Laplace transforms , 1971 .

[25]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[26]  Ward Whitt,et al.  A Unified Framework for Numerically Inverting Laplace Transforms , 2006, INFORMS J. Comput..

[27]  Kishore Singhal,et al.  Computer Methods for Circuit Analysis and Design , 1983 .

[28]  Igor Podlubny,et al.  The Laplace Transform Method for Linear Differential Equations of the Fractional Order , 1997, funct-an/9710005.

[29]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[30]  J. Diard,et al.  Numerical inversion of Laplace transforms.: A useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by PITT , 2007 .

[31]  B. Davies,et al.  Numerical Inversion of the Laplace Transform: A Survey and Comparison of Methods , 1979 .

[32]  C. O'Cinneide Euler summation for fourier series and laplace transform inversion , 1997 .

[33]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[34]  A. N. Stokes,et al.  An Improved Method for Numerical Inversion of Laplace Transforms , 1982 .

[35]  J. Machado Calculation of fractional derivatives of noisy data with genetic algorithms , 2009 .

[36]  Jeng-Fan Leu,et al.  Design of Optimal Fractional-Order PID Controllers , 2002 .

[37]  Kirk Hatfield,et al.  MDL Groundwater software: Laplace transforms and the De Hoog algorithm to solve contaminant transport equations , 2004, Comput. Geosci..

[38]  R. H. Cannon,et al.  Dynamics of Physical Systems , 1967 .

[39]  R. Piessens A bibliography on numerical inversion of the Laplace transform and applications , 1975 .

[40]  Jef L. Teugels,et al.  Numerical accuracy of real inversion formulas for the Laplace transform , 2010, J. Comput. Appl. Math..

[41]  J. A. C. Weideman,et al.  Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..

[42]  I. Podlubny Fractional differential equations , 1998 .

[43]  G. Honig,et al.  A method for the numerical inversion of Laplace transforms , 1984 .

[44]  Taka Sakurai,et al.  Numerical inversion for Laplace transforms of functions with discontinuities , 2004, Advances in Applied Probability.

[45]  S. Kazem Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform , 2013 .

[46]  J. A. C. Weideman,et al.  Algorithms for Parameter Selection in the Weeks Method for Inverting the Laplace Transform , 1999, SIAM J. Sci. Comput..

[47]  Malcolm P. Atkinson,et al.  A comparison of some inverse Laplace transform techniques for use in circuit design , 1972, Comput. J..

[48]  S. Lin,et al.  Laplace transform for solving some families of fractional differential equations and its applications , 2013 .

[49]  Peter D. Welch,et al.  The fast Fourier transform algorithm: Programming considerations in the calculation of sine, cosine and Laplace transforms☆ , 1970 .

[50]  F. Durbin,et al.  Numerical Inversion of Laplace Transforms: An Efficient Improvement to Dubner and Abate's Method , 1974, Comput. J..

[51]  Michael O'Flynn,et al.  Linear Systems: Time Domain and Transform Analysis , 1986 .

[52]  Robert Piessens,et al.  New quadrature formulas for the numerical inversion of the Laplace transform , 1969 .

[53]  Kristopher L. Kuhlman Review of inverse Laplace transform algorithms for Laplace-space numerical approaches , 2012, Numerical Algorithms.

[54]  P. Iseger NUMERICAL TRANSFORM INVERSION USING GAUSSIAN QUADRATURE , 2005, Probability in the Engineering and Informational Sciences.

[55]  Yangquan Chen,et al.  Application of numerical inverse Laplace transform algorithms in fractional calculus , 2011, J. Frankl. Inst..

[56]  S. Vajda,et al.  Inversion of Noise-Free Laplace Transforms: Towards a Standardized Set of Test Problems , 2002 .

[57]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .