Uric acid: a potent molecular contributor to pluripotent stem cell cardiac differentiation via mesoderm specification

[1]  Zack Z Wang,et al.  Epithelial–mesenchymal transition (EMT): A biological process in the development, stem cell differentiation, and tumorigenesis , 2017, Journal of cellular physiology.

[2]  D. Elliott,et al.  Biomarkers of Human Pluripotent Stem Cell-Derived Cardiac Lineages. , 2017, Trends in molecular medicine.

[3]  Berto J. Bouma,et al.  Changing Landscape of Congenital Heart Disease , 2017, Circulation research.

[4]  P. Barker,et al.  Ultrasound Examination of the Fetal Heart. , 2017, Obstetrical & gynecological survey.

[5]  T. Benedek,et al.  Genetics of Congenital Heart Disease: Past and Present , 2016, Biochemical Genetics.

[6]  Pang Wei Koh,et al.  Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types , 2016, Cell.

[7]  Pedro Madrigal,et al.  Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D , 2016, Genes & development.

[8]  H. Ng,et al.  Deterministic Restriction on Pluripotent State Dissolution by Cell-Cycle Pathways , 2015, Cell.

[9]  D. Medici,et al.  Signaling mechanisms of the epithelial-mesenchymal transition , 2014, Science Signaling.

[10]  B. Cui,et al.  Chemically Defined and Small Molecule-Based Generation of Human Cardiomyocytes , 2014, Nature methods.

[11]  D. Kavanagh,et al.  Mesenchymal Stem Cell Priming: Fine-tuning Adhesion and Function , 2014, Stem Cell Reviews and Reports.

[12]  D. Kavanagh,et al.  Mesenchymal Stem Cell Priming: Fine-tuning Adhesion and Function , 2014, Stem Cell Reviews and Reports.

[13]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[14]  Aliccia Bollig-Fischer,et al.  Systems analysis reveals a transcriptional reversal of the mesenchymal phenotype induced by SNAIL-inhibitor GN-25 , 2013, BMC Systems Biology.

[15]  N. Chen,et al.  Proteasome inhibitor inhibits proliferation and induces apoptosis in renal interstitial fibroblasts , 2013, Pharmacological reports : PR.

[16]  E. Abdelalim Molecular Mechanisms Controlling the Cell Cycle in Embryonic Stem Cells , 2013, Stem Cell Reviews and Reports.

[17]  M. J. Kim,et al.  Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. , 2013, American journal of physiology. Renal physiology.

[18]  J. Draper,et al.  Lengthened G1 phase indicates differentiation status in human embryonic stem cells. , 2013, Stem cells and development.

[19]  K. McBride,et al.  Cardiac teratogenicity in mouse maternal phenylketonuria: defining phenotype parameters and genetic background influences. , 2012, Molecular genetics and metabolism.

[20]  Liu Wang,et al.  Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells , 2011, Cell Research.

[21]  S. Gilboa,et al.  Maternal Smoking and Congenital Heart Defects in the Baltimore-Washington Infant Study , 2011, Pediatrics.

[22]  A. Zwinderman,et al.  The changing epidemiology of congenital heart disease , 2011, Nature Reviews Cardiology.

[23]  Jason L Salemi,et al.  Mortality Resulting From Congenital Heart Disease Among Children and Adults in the United States, 1999 to 2006 , 2010, Circulation.

[24]  M. Loane,et al.  The prevalence of congenital anomalies in Europe. , 2010, Advances in experimental medicine and biology.

[25]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[26]  Raghu Kalluri,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[27]  Richard J. Johnson,et al.  Uric Acid: The Oxidant-Antioxidant Paradox , 2008, Nucleosides, nucleotides & nucleic acids.

[28]  V. Dulskienė,et al.  Selected environmental risk factors and congenital heart defects. , 2008, Medicina.

[29]  Jeffrey A. Feinstein,et al.  Noninherited Risk Factors and Congenital Cardiovascular Defects: Current Knowledge , 2007, Pediatrics.

[30]  Jeffrey A. Feinstein,et al.  Noninherited Risk Factors and Congenital Cardiovascular Defects: Current Knowledge: A Scientific Statement From the American Heart Association Council on Cardiovascular Disease in the Young , 2007, Circulation.

[31]  S. Dalton,et al.  Cell cycle control of embryonic stem cells , 2007, Stem Cell Reviews.

[32]  E. Olson,et al.  A Common Progenitor at the Heart of Development , 2006, Cell.

[33]  S. Weiss,et al.  Wnt-dependent Regulation of the E-cadherin Repressor Snail* , 2005, Journal of Biological Chemistry.

[34]  D. Noonan,et al.  NPDC-1, a Novel Regulator of Neuronal Proliferation, Is Degraded by the Ubiquitin/Proteasome System through a PEST Degradation Motif* , 2004, Journal of Biological Chemistry.

[35]  J. Massagué,et al.  Epithelial-Mesenchymal Transitions Twist in Development and Metastasis , 2004, Cell.

[36]  T. Özçelik,et al.  Uric acid as radical scavenger and antioxidant in the heart , 1989, Pflügers Archiv.

[37]  Richard T. Lee,et al.  Ascorbic Acid Enhances Differentiation of Embryonic Stem Cells Into Cardiac Myocytes , 2003, Circulation.

[38]  A. Nikolov,et al.  [Maternal insulin-dependent diabetes and congenital malformations in the newborn]. , 2003, Akusherstvo i ginekologiia.

[39]  Austin G Smith,et al.  Signalling, cell cycle and pluripotency in embryonic stem cells. , 2002, Trends in cell biology.

[40]  P. R. Yew,et al.  Ubiquitin‐mediated proteolysis of vertebrate G1‐ and S‐phase regulators , 2001, Journal of cellular physiology.

[41]  Francisco Portillo,et al.  The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression , 2000, Nature Cell Biology.

[42]  A. G. Herreros,et al.  The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells , 2000, Nature Cell Biology.

[43]  Daniel Levy,et al.  Serum Uric Acid and Risk for Cardiovascular Disease and Death: The Framingham Heart Study , 1999, Annals of Internal Medicine.

[44]  B. Ames,et al.  Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. , 1981, Proceedings of the National Academy of Sciences of the United States of America.