Assessment of ten DFT methods in predicting structures of sheet silicates: importance of dispersion corrections.

The performance of ten density functional theory (DFT) methods in a prediction of the structure of four clay minerals, in which non-bonding interactions dominate in the layer stacking (dispersive forces in talc and pyrophyllite, and hydrogen bonds in lizardite and kaolinite), is reported. In a set of DFT methods following functionals were included: standard local and semi-local (LDA, PW91, PBE, and RPBE), dispersion corrected (PW91-D2, PBE-D2, RPBE-D2, and vdW-TS), and functionals developed specifically for solids and solid surfaces (PBEsol and AM05). We have shown that the standard DFT functionals fail in the correct prediction of the structural parameters, for which non-bonding interactions are important. The remarkable improvement leading to very good agreement with experimental structures is achieved if the dispersion corrections are included in the DFT calculations. In such cases the relative error for the most sensitive lattice vector c dropped below 1%. Very good performance was also observed for both DFT functionals developed for solids. Especially, the results achieved with the PBEsol are qualitatively similar to those with DFT-D2.

[1]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[2]  M. Mellini The crystal structure of lizardite 1T: hydrogen bonds and polytypism , 1982 .

[3]  D. Tunega,et al.  Theoretical study of cation substitution in trioctahedral sheet of phyllosilicates. An effect on inner OH group , 2003 .

[4]  Jirí Cerný,et al.  Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..

[5]  S. W. Bailey Summary of recommendations of AIPEA Nomenclature Committee on clay minerals , 1980 .

[6]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[7]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[8]  H. A. McKinstry Thermal expansion of clay minerals , 1965 .

[9]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[11]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[12]  Daniel Tunega,et al.  Ab initio density functional theory applied to the structure and proton dynamics of clays , 2001 .

[13]  D. Bougeard,et al.  Vibrational Spectra and Structure of Kaolinite: A Computer Simulation Study , 2000 .

[14]  A. Yamagishi,et al.  First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates , 2004 .

[15]  H. Lischka,et al.  Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates , 2007 .

[16]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[17]  H. Lischka,et al.  Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study , 2001 .

[18]  Haydn H. Murray,et al.  Traditional and new applications for kaolin, smectite, and palygorskite: a general overview , 2000 .

[19]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[20]  A. Michaelides,et al.  Water on the hydroxylated (0 0 1) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer , 2008 .

[21]  F. Hossain,et al.  Ab-initio electronic structure, optical, dielectric and bonding properties of lizardite-1T , 2011 .

[22]  C. I. Sainz-Díaz,et al.  DFT calculation of crystallographic properties of dioctahedral 2:1 phyllosilicates , 2008, Clay Minerals.

[23]  Hiromi Nakai,et al.  Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. , 2009, The Journal of chemical physics.

[24]  G. Valdrè,et al.  Ab initio quantum-mechanical modeling of pyrophyllite [Al2Si4O10(OH)2] and talc [Mg3Si4O10(OH)2] surfaces , 2006 .

[25]  M. Lazzeri,et al.  First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite , 2005 .

[26]  K. Rosso,et al.  Ab Initio Determination of Edge Surface Structures for Dioctahedral 2:1 Phyllosilicates: Implications for Acid-Base Reactivity , 2003 .

[27]  D. Bish Rietveld Refinement of the Kaolinite Structure at 1.5 K , 1993 .

[28]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[29]  P. Ugliengo,et al.  Role of dispersive interactions in layered materials: a periodic B3LYP and B3LYP-D* study of Mg(OH)2, Ca(OH)2 and kaolinite , 2009 .

[30]  M. Burghammer,et al.  Refinement of the Kaolinite Structure From Single-Crystal Synchrotron Data , 1999 .

[31]  B. Perdikatsis,et al.  Strukturverfeinerung am Talk Mg3[(OH)2Si4O,10] , 1981 .

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Vamsee K Voora,et al.  Density functional theory study of pyrophyllite and M-montmorillonites (M = Li, Na, K, Mg, and Ca): role of dispersion interactions. , 2011, The journal of physical chemistry. A.

[34]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[35]  D. Bish,et al.  Rietveld Refinement of Non-Hydrogen Atomic Positions in Kaolinite , 1989 .

[36]  C. I. Sainz-Díaz,et al.  Crystal structure and hydroxyl group vibrational frequencies of phyllosilicates by DFT methods , 2009 .

[37]  Lori A Burns,et al.  Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions. , 2011, Journal of chemical theory and computation.

[38]  A. Marco Saitta,et al.  First-principles modeling of the infrared spectrum of kaolinite , 2001 .

[39]  I. Tavernelli,et al.  Multicenter-type corrections to standard DFT exchange and correlation functionals , 2009 .

[40]  G. Sposito,et al.  Ab Initio Computational Crystallography of 2:1 Clay Minerals: 1. Pyrophyllite-1Tc , 2003 .

[41]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[42]  Axel D. Becke,et al.  van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes , 2010 .

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[45]  S. Guggenheim,et al.  Single crystal X-ray refinement of pyrophyllite-1Tc , 1981 .

[46]  David S. Sholl,et al.  Density Functional Theory , 2009 .

[47]  Y. L. Page,et al.  Rational ab initio modeling for low energy hydrogen-bonded phyllosilicate polytypes , 2011 .

[48]  M. Payne,et al.  Ab-initio total energy study of uncharged 2:1 clays and their interaction with water , 1996 .

[49]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[50]  M. P. Sears,et al.  All-atom ab initio energy minimization of the kaolinite crystal structure , 1997 .

[51]  D. Tunega,et al.  The combined inelastic neutron scattering and solid state DFT study of hydrogen atoms dynamics in a highly ordered kaolinite , 2010, PCM 2010.

[52]  A. Yamagishi,et al.  First-principles studies on the elastic constants of a 1:1 layered kaolinite mineral , 2005 .

[53]  D. Truhlar,et al.  A Prototype for Graphene Material Simulation : Structures and Interaction Potentials of Coronene Dimers , 2008 .

[54]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[55]  C. Viti,et al.  Hydrogen positions and thermal expansion in lizardite-1T from Elba: A low-temperature study using Rietveld refinement of neutron diffraction data , 1996 .

[56]  James P. Larentzos,et al.  An ab Initio and Classical Molecular Dynamics Investigation of the Structural and Vibrational Properties of Talc and Pyrophyllite , 2007 .

[57]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[58]  Y. L. Page,et al.  Letter. Kaolin polytypes revisited ab initio at 10 GPa , 2010 .

[59]  R. Dovesi,et al.  Performance of 12 DFT functionals in the study of crystal systems: Al2SiO5 orthosilicates and Al hydroxides as a case study , 2010 .

[60]  L. Benco,et al.  HARTREE-FOCK STUDY OF PRESSURE-INDUCED STRENGTHENING OF HYDROGEN BONDING IN LIZARDITE-1T , 1998 .

[61]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[62]  L. Benco,et al.  Ab initio periodic Hartree-Fock study of lizardite IT , 1996 .

[63]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[66]  G. DiLabio,et al.  Accurate treatment of van der Waals interactions using standard density functional theory methods with effective core-type potentials: Application to carbon-containing dimers , 2008 .

[67]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[68]  Efthimios Kaxiras,et al.  Atomic and Electronic Structure of Solids: Elements of thermodynamics , 2003 .

[69]  Georg Kresse,et al.  The AM05 density functional applied to solids. , 2008, The Journal of chemical physics.

[70]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[71]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[72]  Jürgen Hafner,et al.  Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.

[73]  H. Lischka,et al.  Ab Initio Molecular Dynamics Study of a Monomolecular Water Layer on Octahedral and Tetrahedral Kaolinite Surfaces , 2004 .

[74]  Gino A. DiLabio,et al.  Dispersion Interactions in Density‐Functional Theory , 2010 .

[75]  G. Kearley,et al.  What is the structure of kaolinite? Reconciling theory and experiment. , 2009, The journal of physical chemistry. B.

[76]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[77]  E. Artacho,et al.  Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite , 2002 .

[78]  J. Martins,et al.  Theoretical study of kaolinite , 2005 .

[79]  Daniel Tunega,et al.  Upper Limit of the O−H···O Hydrogen Bond. Ab Initio Study of the Kaolinite Structure , 2001 .