Assessment of ten DFT methods in predicting structures of sheet silicates: importance of dispersion corrections.
暂无分享,去创建一个
Daniel Tunega | Ali Zaoui | Tomáš Bučko | T. Bučko | A. Zaoui | D. Tunega
[1] T. Steiner. The hydrogen bond in the solid state. , 2002, Angewandte Chemie.
[2] M. Mellini. The crystal structure of lizardite 1T: hydrogen bonds and polytypism , 1982 .
[3] D. Tunega,et al. Theoretical study of cation substitution in trioctahedral sheet of phyllosilicates. An effect on inner OH group , 2003 .
[4] Jirí Cerný,et al. Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..
[5] S. W. Bailey. Summary of recommendations of AIPEA Nomenclature Committee on clay minerals , 1980 .
[6] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[7] J. Nørskov,et al. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .
[8] H. A. McKinstry. Thermal expansion of clay minerals , 1965 .
[9] D. Bowler,et al. Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[10] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[11] Stefan Grimme,et al. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..
[12] Daniel Tunega,et al. Ab initio density functional theory applied to the structure and proton dynamics of clays , 2001 .
[13] D. Bougeard,et al. Vibrational Spectra and Structure of Kaolinite: A Computer Simulation Study , 2000 .
[14] A. Yamagishi,et al. First-principle study of polytype structures of 1:1 dioctahedral phyllosilicates , 2004 .
[15] H. Lischka,et al. Ab initio calculations of relative stabilities of different structural arrangements in dioctahedral phyllosilicates , 2007 .
[16] Donald G Truhlar,et al. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.
[17] H. Lischka,et al. Orientation of OH groups in kaolinite and dickite: Ab initio molecular dynamics study , 2001 .
[18] Haydn H. Murray,et al. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview , 2000 .
[19] Yingkai Zhang,et al. Comment on “Generalized Gradient Approximation Made Simple” , 1998 .
[20] A. Michaelides,et al. Water on the hydroxylated (0 0 1) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer , 2008 .
[21] F. Hossain,et al. Ab-initio electronic structure, optical, dielectric and bonding properties of lizardite-1T , 2011 .
[22] C. I. Sainz-Díaz,et al. DFT calculation of crystallographic properties of dioctahedral 2:1 phyllosilicates , 2008, Clay Minerals.
[23] Hiromi Nakai,et al. Density functional method including weak interactions: Dispersion coefficients based on the local response approximation. , 2009, The Journal of chemical physics.
[24] G. Valdrè,et al. Ab initio quantum-mechanical modeling of pyrophyllite [Al2Si4O10(OH)2] and talc [Mg3Si4O10(OH)2] surfaces , 2006 .
[25] M. Lazzeri,et al. First-principles study of OH-stretching modes in kaolinite, dickite, and nacrite , 2005 .
[26] K. Rosso,et al. Ab Initio Determination of Edge Surface Structures for Dioctahedral 2:1 Phyllosilicates: Implications for Acid-Base Reactivity , 2003 .
[27] D. Bish. Rietveld Refinement of the Kaolinite Structure at 1.5 K , 1993 .
[28] A. Tkatchenko,et al. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.
[29] P. Ugliengo,et al. Role of dispersive interactions in layered materials: a periodic B3LYP and B3LYP-D* study of Mg(OH)2, Ca(OH)2 and kaolinite , 2009 .
[30] M. Burghammer,et al. Refinement of the Kaolinite Structure From Single-Crystal Synchrotron Data , 1999 .
[31] B. Perdikatsis,et al. Strukturverfeinerung am Talk Mg3[(OH)2Si4O,10] , 1981 .
[32] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[33] Vamsee K Voora,et al. Density functional theory study of pyrophyllite and M-montmorillonites (M = Li, Na, K, Mg, and Ca): role of dispersion interactions. , 2011, The journal of physical chemistry. A.
[34] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[35] D. Bish,et al. Rietveld Refinement of Non-Hydrogen Atomic Positions in Kaolinite , 1989 .
[36] C. I. Sainz-Díaz,et al. Crystal structure and hydroxyl group vibrational frequencies of phyllosilicates by DFT methods , 2009 .
[37] Lori A Burns,et al. Assessment of the Performance of DFT and DFT-D Methods for Describing Distance Dependence of Hydrogen-Bonded Interactions. , 2011, Journal of chemical theory and computation.
[38] A. Marco Saitta,et al. First-principles modeling of the infrared spectrum of kaolinite , 2001 .
[39] I. Tavernelli,et al. Multicenter-type corrections to standard DFT exchange and correlation functionals , 2009 .
[40] G. Sposito,et al. Ab Initio Computational Crystallography of 2:1 Clay Minerals: 1. Pyrophyllite-1Tc , 2003 .
[41] Wang,et al. Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.
[42] Axel D. Becke,et al. van der Waals Interactions in Density-Functional Theory: Intermolecular Complexes , 2010 .
[43] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[44] G. Scuseria,et al. Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.
[45] S. Guggenheim,et al. Single crystal X-ray refinement of pyrophyllite-1Tc , 1981 .
[46] David S. Sholl,et al. Density Functional Theory , 2009 .
[47] Y. L. Page,et al. Rational ab initio modeling for low energy hydrogen-bonded phyllosilicate polytypes , 2011 .
[48] M. Payne,et al. Ab-initio total energy study of uncharged 2:1 clays and their interaction with water , 1996 .
[49] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[50] M. P. Sears,et al. All-atom ab initio energy minimization of the kaolinite crystal structure , 1997 .
[51] D. Tunega,et al. The combined inelastic neutron scattering and solid state DFT study of hydrogen atoms dynamics in a highly ordered kaolinite , 2010, PCM 2010.
[52] A. Yamagishi,et al. First-principles studies on the elastic constants of a 1:1 layered kaolinite mineral , 2005 .
[53] D. Truhlar,et al. A Prototype for Graphene Material Simulation : Structures and Interaction Potentials of Coronene Dimers , 2008 .
[54] Stefan Grimme,et al. Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..
[55] C. Viti,et al. Hydrogen positions and thermal expansion in lizardite-1T from Elba: A low-temperature study using Rietveld refinement of neutron diffraction data , 1996 .
[56] James P. Larentzos,et al. An ab Initio and Classical Molecular Dynamics Investigation of the Structural and Vibrational Properties of Talc and Pyrophyllite , 2007 .
[57] Hafner,et al. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.
[58] Y. L. Page,et al. Letter. Kaolin polytypes revisited ab initio at 10 GPa , 2010 .
[59] R. Dovesi,et al. Performance of 12 DFT functionals in the study of crystal systems: Al2SiO5 orthosilicates and Al hydroxides as a case study , 2010 .
[60] L. Benco,et al. HARTREE-FOCK STUDY OF PRESSURE-INDUCED STRENGTHENING OF HYDROGEN BONDING IN LIZARDITE-1T , 1998 .
[61] Kyuho Lee,et al. Higher-accuracy van der Waals density functional , 2010, 1003.5255.
[62] L. Benco,et al. Ab initio periodic Hartree-Fock study of lizardite IT , 1996 .
[63] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[64] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[65] S. Grimme. Density functional theory with London dispersion corrections , 2011 .
[66] G. DiLabio,et al. Accurate treatment of van der Waals interactions using standard density functional theory methods with effective core-type potentials: Application to carbon-containing dimers , 2008 .
[67] D. Langreth,et al. Van Der Waals Interactions In Density Functional Theory , 2007 .
[68] Efthimios Kaxiras,et al. Atomic and Electronic Structure of Solids: Elements of thermodynamics , 2003 .
[69] Georg Kresse,et al. The AM05 density functional applied to solids. , 2008, The Journal of chemical physics.
[70] M. Dion,et al. van der Waals density functional for general geometries. , 2004, Physical review letters.
[71] Ivano Tavernelli,et al. Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.
[72] Jürgen Hafner,et al. Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. , 2010, The journal of physical chemistry. A.
[73] H. Lischka,et al. Ab Initio Molecular Dynamics Study of a Monomolecular Water Layer on Octahedral and Tetrahedral Kaolinite Surfaces , 2004 .
[74] Gino A. DiLabio,et al. Dispersion Interactions in Density‐Functional Theory , 2010 .
[75] G. Kearley,et al. What is the structure of kaolinite? Reconciling theory and experiment. , 2009, The journal of physical chemistry. B.
[76] D. Bowler,et al. Van der Waals density functionals applied to solids , 2011, 1102.1358.
[77] E. Artacho,et al. Quantum mechanical calculations of dioctahedral 2:1 phyllosilicates: Effect of octahedral cation distributions in pyrophyllite, illite, and smectite , 2002 .
[78] J. Martins,et al. Theoretical study of kaolinite , 2005 .
[79] Daniel Tunega,et al. Upper Limit of the O−H···O Hydrogen Bond. Ab Initio Study of the Kaolinite Structure , 2001 .