Digital-Pixel Focal Plane Array Technology

Many emerging thermal infrared (IR) sensing applications simultaneously demand high sensitivity, large dynamic range, large pixel count, and operation at fast data rates. Among these applications are day/night persistent surveillance, border patrol and protection, aerial search and rescue, and environmental remote sensing. Such applications typically require sensor systems capable of high-quality, large-pixel-count images; furthermore, in many cases, the images must be processed rapidly to extract time-critical information. For example, real-time feature extraction that localizes a region of interest can be a key component of a high-resolution, wide-area imaging system. These requirements are driving the demand for high-capacity image processing. Another much-sought-after demand is the ability to integrate real-time, high pixel-count, image-based sensor systems into low size, weight, and power (SWaP) packages to enable the integration of the systems into a wide range of platforms. However, the development of such low-SWaP, high-performance sensor systems poses significant challenges for conventional focal plane array (FPA) technologies , which have limited data rate, dynamic range, and on-chip processing capabilities. While conventional technologies perform well in limited circumstances, scaling the technologies to meet these emerging demands is difficult and results in large, complex, expensive systems. The digital-pixel focal plane array (DFPA) was developed to address the shortfalls of conventional FPAs. The DFPA combines a commercially produced detector array with a digital-pixel readout integrated circuit (DROIC) designed by Lincoln Laboratory; this compat-Lincoln Laboratory has developed a digital-pixel focal plane array with per-pixel, 16-bit full dynamic range, analog-to-digital conversion, and real-time digital image processing capability. The technology leverages modern semiconductor processes to achieve low-power, high-component-density designs. Infrared sensors based on this innovative technology are enabling very-wide-area, high-resolution, high-sensitivity, high-update-rate imaging, as well as novel sensing modalities.