Cu(2)O nanowires in an alumina template: electrochemical conditions for the synthesis and photoluminescence characteristics.

Cu2O nanowires, mainly consisting of (100) and (200) polycrystalline structures with a length of 4 mum are prepared by electrochemical deposition using a porous alumina template. It is found that the optimized electrochemical conditions to prepare Cu2O nanowires are different from those for the formation of a bulk thin Cu2O layer since different pH values are found between the tip of the pores and the bulk, due to diffusion limits in porous alumina with an extremely high aspect ratio of 300. We point out that Cu2O (200), Cu2O (111), Cu, and co-deposited alloys can be obtained under specific electrochemical conditions. In addition, the optical band gap of the prepared Cu2O nanowires with a length of 4 microm and a diameter of 200 nm is estimated to be 2.17 eV from photoluminescence measurements.

[1]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[2]  Toshiaki Tamamura,et al.  Photonic Crystal Using Anodic Porous Alumina , 1999 .

[3]  J. Kuśba,et al.  Effects of metallic silver particles on resonance energy transfer in labeled bovine serum albumin. , 2002, Biochemical and biophysical research communications.

[4]  Ronald Gronsky,et al.  Structure of Bismuth Telluride Nanowire Arrays Fabricated by Electrodeposition into Porous Anodic Alumina Templates , 2003 .

[5]  Electrochemically Deposited NanoColumnar Junctions of Cu2O and ZnO on Ni Nanowires , 2005 .

[6]  Kornelius Nielsch,et al.  Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition , 2000 .

[7]  Bo Zhang,et al.  Antimony Nanowire Arrays Fabricated by Pulsed Electrodeposition in Anodic Alumina Membranes , 2002 .

[8]  T. Goldman,et al.  Electrochemical Deposition of Copper(I) Oxide Films , 1996 .

[9]  Thomas E. Mallouk,et al.  Orthogonal Self‐Assembly on Colloidal Gold‐Platinum Nanorods , 1999 .

[10]  Jaeyoung Lee,et al.  Electrochemical deposition of a single phase of pure Cu2O films by current modulation methods , 1999 .

[11]  Charles M. Lieber,et al.  Synthesis and characterization of carbide nanorods , 1995, Nature.

[12]  M. Carter,et al.  Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties , 1998 .

[13]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[14]  Ralf B. Wehrspohn,et al.  Hexagonally Arranged Monodisperse Silver Nanowires with Adjustable Diameter and High Aspect Ratio , 2003 .

[15]  P. D. Jongh,et al.  Cu2O: Electrodeposition and Characterization , 1999 .

[16]  A. Greiner,et al.  Polymer Nanotubes by Wetting of Ordered Porous Templates , 2002, Science.

[17]  Ronald Gronsky,et al.  Fabrication of High‐Density, High Aspect Ratio, Large‐Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates , 2002 .

[18]  P. Chatterjee,et al.  Powder profile studies in electrodeposited cuprous oxide films , 1999 .

[19]  Jaeyoung Lee,et al.  Electrodeposition of Cu2O nanowires using nanoporous alumina template , 2004 .

[20]  Ralf B. Wehrspohn,et al.  Highly ordered monocrystalline silver nanowire arrays , 2002 .

[21]  Reinald Hillebrand,et al.  Perfect two-dimensional porous alumina photonic crystals with duplex oxide layers , 2003 .

[22]  P. D. Jongh,et al.  Cu2O: a catalyst for the photochemical decomposition of water? , 1999 .