Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338

Saccharopolyspora erythraea is used for the industrial-scale production of the antibiotic erythromycin A, derivatives of which play a vital role in medicine. The sequenced chromosome of this soil bacterium comprises 8,212,805 base pairs, predicted to encode 7,264 genes. It is circular, like those of the pathogenic actinomycetes Mycobacterium tuberculosis and Corynebacterium diphtheriae, but unlike the linear chromosomes of the model actinomycete Streptomyces coelicolor A3(2) and the closely related Streptomyces avermitilis. The S. erythraea genome contains at least 25 gene clusters for production of known or predicted secondary metabolites, at least 72 genes predicted to confer resistance to a range of common antibiotic classes and many sets of duplicated genes to support its saprophytic lifestyle. The availability of the genome sequence of S. erythraea will improve insight into its biology and facilitate rational development of strains to generate high-titer producers of clinically important antibiotics.

[1]  G. Challis,et al.  Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. , 2000, Chemistry & biology.

[2]  Ralph Kirby,et al.  Once the circle has been broken: dynamics and evolution of Streptomyces chromosomes. , 2002, Trends in genetics : TIG.

[3]  Arsen O. Batagov,et al.  Identification of erythrobactin, a hydroxamate‐type siderophore produced by Saccharopolyspora erythraea , 2006, Letters in applied microbiology.

[4]  G. Challis,et al.  Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. , 2004, Journal of the American Chemical Society.

[5]  K. Poralla,et al.  Hopanoids are formed during transition from substrate to aerial hyphae in Streptomyces coelicolor A3(2). , 2000, FEMS microbiology letters.

[6]  A. Reeves,et al.  Physical-genetic map of the erythromycin-producing organism Saccharopolyspora erythraea. , 1998, Microbiology.

[7]  M. Staver,et al.  Erythromycin production in Saccharopolyspora erythraea does not require a functional propionyl‐CoA carboxylase , 1996, Molecular microbiology.

[8]  B. Wilkinson,et al.  Identification and cloning of a type III polyketide synthase required for diffusible pigment biosynthesis in Saccharopolyspora erythraea ‡ , 2002, Molecular microbiology.

[9]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[10]  Sylvie Lautru,et al.  Discovery of a new peptide natural product by Streptomyces coelicolor genome mining , 2005, Nature chemical biology.

[11]  Yoshiyuki Sakaki,et al.  Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis , 2003, Nature Biotechnology.

[12]  P. Leadlay,et al.  A New Modular Polyketide Synthase in the Erythromycin Producer Saccharopolyspora erythraea , 2005, Journal of Molecular Microbiology and Biotechnology.

[13]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[14]  Thomas Börner,et al.  Natural Biocombinatorics in the Polyketide Synthase Genes of the Actinobacterium Streptomyces avermitilis , 2006, PLoS Comput. Biol..

[15]  S. Donadio,et al.  Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans , 2004, Molecular and General Genetics MGG.

[16]  Tilmann Weber,et al.  Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs) , 2005, Nucleic acids research.

[17]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.

[18]  J. Volff,et al.  A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. , 2000, FEMS microbiology letters.

[19]  Eugene Goltsman,et al.  Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. , 2006, Genome research.

[20]  Rainer Merkl,et al.  SIGI: score-based identification of genomic islands , 2004, BMC Bioinformatics.

[21]  L. Katz,et al.  Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea , 1990, Journal of bacteriology.

[22]  M. Hattori,et al.  The complete genomic sequence of Nocardia farcinica IFM 10152. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Nielsen,et al.  Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. , 2005, Genome research.

[24]  B. Barrell,et al.  The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. , 2003, Nucleic acids research.

[25]  Kira J. Weissman,et al.  Combinatorial biosynthesis of reduced polyketides , 2005, Nature Reviews Microbiology.

[26]  Weiwen Zhang,et al.  MeaA, a Putative Coenzyme B12-Dependent Mutase, Provides Methylmalonyl Coenzyme A for Monensin Biosynthesis in Streptomyces cinnamonensis , 2001, Journal of bacteriology.

[27]  Precursor supply for polyketide biosynthesis: the role of crotonyl-CoA reductase. , 2001, Metabolic engineering.

[28]  I. Brikun,et al.  Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. , 2004, Metabolic engineering.

[29]  J. Zakrzewska‐Czerwińska,et al.  Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein. , 1998, Microbiology.

[30]  M. Hudson,et al.  The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[32]  P. Leadlay Purification and characterization of methylmalonyl-CoA epimerase from Propionibacterium shermanii. , 1981, The Biochemical journal.

[33]  B. Wilkinson,et al.  Biosynthesis of Erythromycin and Rapamycin. , 1997, Chemical reviews.

[34]  K A Reynolds,et al.  Ethyl-substituted erythromycin derivatives produced by directed metabolic engineering. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Sirakova,et al.  Identification and Characterization of Rv3281 as a Novel Subunit of a Biotin-dependent Acyl-CoA Carboxylase in Mycobacterium tuberculosis H37Rv* , 2006, Journal of Biological Chemistry.

[36]  Stanley N Cohen,et al.  Recruitment of terminal protein to the ends of Streptomyces linear plasmids and chromosomes by a novel telomere-binding protein essential for linear DNA replication. , 2003, Genes & development.

[37]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[38]  J. Staunton,et al.  Polyketide biosynthesis: a millennium review. , 2001, Natural product reports.

[39]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[40]  R. Müller,et al.  Novel Insights into Siderophore Formation in Myxobacteria , 2005, Chembiochem : a European journal of chemical biology.

[41]  D. Hopwood,et al.  The chromosomal DNA of Streptomyces lividans 66 is linear , 1994, Molecular microbiology.

[42]  M. Borodovsky,et al.  GeneMark.hmm: new solutions for gene finding. , 1998, Nucleic acids research.

[43]  D. Labeda Transfer of the Type Strain of Streptomyces erythraeus (Waksman 1923) Waksman and Henrici 1948 to the Genus Saccharopolyspora Lacey and Goodfellow 1975 as Saccharopolyspora erythraea sp. nov., and Designation of a Neotype Strain for Streptomyces erythraeus , 1987 .

[44]  A. Constantinou,et al.  Isolation of isoflavones from soy-based fermentations of the erythromycin-producing bacterium Saccharopolyspora erythraea , 1997, Applied Microbiology and Biotechnology.

[45]  J. Cullum,et al.  Physical map of the Streptomyces lividans 66 genome and comparison with that of the related strain Streptomyces coelicolor A3(2) , 1993, Journal of bacteriology.

[46]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[47]  C. Khosla,et al.  Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found in Streptomyces coelicolor A3(2)* , 2002, The Journal of Biological Chemistry.

[48]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[49]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.