Bayesian network structure learning using quantum annealing

We introduce a method for the problem of learning the structure of a Bayesian network using the quantum adiabatic algorithm. We do so by introducing an efficient reformulation of a standard posterior-probability scoring function on graphs as a pseudo-Boolean function, which is equivalent to a system of 2-body Ising spins, as well as suitable penalty terms for enforcing the constraints necessary for the reformulation; our proposed method requires 𝓞(n2) qubits for n Bayesian network variables. Furthermore, we prove lower bounds on the necessary weighting of these penalty terms. The logical structure resulting from the mapping has the appealing property that it is instance-independent for a given number of Bayesian network variables, as well as being independent of the number of data cases.

[1]  Xin Huang,et al.  SHORT-TERM SOLAR FLARE LEVEL PREDICTION USING A BAYESIAN NETWORK APPROACH , 2010 .

[2]  Alán Aspuru-Guzik,et al.  Resource efficient gadgets for compiling adiabatic quantum optimization problems , 2013, 1307.8041.

[3]  Robert R. Tucci Quantum Circuit For Discovering from Data the Structure of Classical Bayesian Networks , 2015 .

[4]  Matthias Troyer,et al.  Optimised simulated annealing for Ising spin glasses , 2014, Comput. Phys. Commun..

[5]  Ray,et al.  Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations. , 1989, Physical review. B, Condensed matter.

[6]  James Cussens,et al.  Bayesian network learning by compiling to weighted MAX-SAT , 2008, UAI.

[7]  Seth Lloyd,et al.  Scalable Architecture for Adiabatic Quantum Computing of Np-Hard Problems , 2004 .

[8]  Nir Friedman,et al.  Probabilistic Graphical Models: Principles and Techniques - Adaptive Computation and Machine Learning , 2009 .

[9]  David Maxwell Chickering,et al.  Learning Bayesian Networks is , 1994 .

[10]  Robert R. Tucci An Introduction to Quantum Bayesian Networks for Mixed States , 2012 .

[11]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: I. The parameter setting problem , 2008, Quantum Inf. Process..

[12]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[13]  B. Chakrabarti,et al.  Colloquium : Quantum annealing and analog quantum computation , 2008, 0801.2193.

[14]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..

[15]  Vasil S. Denchev Binary classification with adiabatic quantum optimization , 2013 .

[16]  Scott Aaronson,et al.  BQP and the polynomial hierarchy , 2009, STOC '10.

[17]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[18]  Aidan Roy,et al.  A practical heuristic for finding graph minors , 2014, ArXiv.

[19]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[20]  Lane H. Clark,et al.  Graph isomorphism and adiabatic quantum computing , 2013, ArXiv.

[21]  Fabián A. Chudak,et al.  Experimental determination of Ramsey numbers. , 2012, Physical Review Letters.

[22]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[23]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[24]  Nir Friedman,et al.  Data Analysis with Bayesian Networks: A Bootstrap Approach , 1999, UAI.

[25]  Daniel Nagaj,et al.  Quantum speedup by quantum annealing. , 2012, Physical review letters.

[26]  Ryan Babbush,et al.  Construction of non-convex polynomial loss functions for training a binary classifier with quantum annealing , 2014, ArXiv.

[27]  R. Biswas,et al.  A quantum annealing approach for fault detection and diagnosis of graph-based systems , 2014, The European Physical Journal Special Topics.

[28]  G. Rose,et al.  Construction of model Hamiltonians for adiabatic quantum computation and its application to finding low-energy conformations of lattice protein models , 2008, 0801.3625.

[29]  Vicky Choi,et al.  Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design , 2010, Quantum Inf. Process..

[30]  Endre Boros,et al.  On quadratization of pseudo-Boolean functions , 2012, ISAIM.

[31]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[32]  David Maxwell Chickering,et al.  Learning Bayesian networks: The combination of knowledge and statistical data , 1995, Mach. Learn..

[33]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[34]  Ryan Babbush,et al.  Construction of Energy Functions for Lattice Heteropolymer Models: Efficient Encodings for Constraint Satisfaction Programming and Quantum Annealing , 2012 .

[35]  John Quackenbush,et al.  Seeded Bayesian Networks: Constructing genetic networks from microarray data , 2008, BMC Systems Biology.

[36]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.