Particle size estimate of grinding processes using random vector functional link networks with improved robustness

[1]  Surafel Luleseged Tilahun,et al.  Prey-Predator Algorithm: A New Metaheuristic Algorithm for Optimization Problems , 2015, Int. J. Inf. Technol. Decis. Mak..

[2]  Dianhui Wang,et al.  Fast decorrelated neural network ensembles with random weights , 2014, Inf. Sci..

[3]  Tianyou Chai,et al.  Modeling and Simulation of Whole Ball Mill Grinding Plant for Integrated Control , 2014, IEEE Transactions on Automation Science and Engineering.

[4]  Tianyou Chai,et al.  Data-Driven Soft-Sensor Modeling for Product Quality Estimation Using Case-Based Reasoning and Fuzzy-Similarity Rough Sets , 2014, IEEE Transactions on Automation Science and Engineering.

[5]  Ö. G. Alma Comparison of Robust Regression Methods in Linear Regression , 2011 .

[6]  Daniel Sbarbaro,et al.  Advanced Control and Supervision of Mineral Processing Plants , 2010 .

[7]  Ivan Tyukin,et al.  Feasibility of random basis function approximators for modeling and control , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[8]  Aleksandar Lazarevic,et al.  Outlier Detection with Kernel Density Functions , 2007, MLDM.

[9]  Jing Bi,et al.  Hybrid Intelligent Modeling Approach for the Ball Mill Grinding Process , 2007, ISNN.

[10]  Kishalay Mitra,et al.  Modeling of an industrial wet grinding operation using data-driven techniques , 2006, Comput. Chem. Eng..

[11]  Tianyou Chai,et al.  A Hybrid Intelligent Soft-Sensor Model for Dynamic Particle Size Estimation in Grinding Circuits , 2005, ISNN.

[12]  R. McCuen Modeling Hydrologic Change: Statistical Methods , 2002 .

[13]  Mark Cross,et al.  Modeling and Simulation of Mineral Processing Systems , 2003 .

[14]  Daniel Hodouin,et al.  A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers , 2000 .

[15]  D. J. Albers,et al.  Routes to Chaos in Neural Networks with Random Weights , 1998 .

[16]  Tommy W. S. Chow,et al.  Comments on "Stochastic choice of basis functions in adaptive function approximation and the functional-link net" [and reply] , 1997, IEEE Trans. Neural Networks.

[17]  Yoh-Han Pao,et al.  Stochastic choice of basis functions in adaptive function approximation and the functional-link net , 1995, IEEE Trans. Neural Networks.

[18]  Dejan J. Sobajic,et al.  Learning and generalization characteristics of the random vector Functional-link net , 1994, Neurocomputing.

[19]  Robert P. W. Duin,et al.  Feedforward neural networks with random weights , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[20]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[21]  Dejan J. Sobajic,et al.  Neural-net computing and the intelligent control of systems , 1992 .

[22]  Y. Takefuji,et al.  Functional-link net computing: theory, system architecture, and functionalities , 1992, Computer.

[23]  Raj K. Rajamani,et al.  Optimal control of a ball mill grinding circuit—I. Grinding circuit modeling and dynamic simulation , 1991 .

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  Douglas W. Fuerstenau,et al.  Scale-up procedure for continuous grinding mill design using population balance models , 1980 .

[26]  K. S. Banerjee,et al.  Generalized Inverse of Matrices and Its Applications , 1973 .

[27]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .