Modèles de calcul sur les réels, résultats de comparaison. (Computation on the reals.Comparison of some models)

Il existe de nombreux modeles de calcul sur les reels. Ces differents modeles calculent diverses fonctions, certains sont plus puissants que d'autres, certains sont deux a deux incomparables. Le calcul sur les reels est donc de ce point de vue bien different du calcul sur les entiers qui est unifie par la these de Church-Turing affirmant que tous les modeles raisonnables calculent les memes fonctions. Nous montrons des equivalences entre les fonctions recursivement calculables et une certaine classe de fonctions R-recursives et entre les fonctions GPAC-calculables et les fonctions recursivement calculables. Nous montrons egalement une hierarchie de classes de fonctions R-recursives qui caracterisent les fonctions elementairement calculables, les fonctions de la hierarchie de Grzegorczyk et les fonctions recursivement calculables a l'aide d'un operateur de limite. Ces resultats constituent donc une avancee vers une eventuelle unification des modeles de calcul sur les reels

[1]  Qing Zhou Subclasses of computable real valued functions , 1997 .

[2]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[3]  Peter Hertling,et al.  Feasible Real Random Access Machines , 1998, J. Complex..

[4]  Cristopher Moore,et al.  An Analog Characterization of the Grzegorczyk Hierarchy , 2002, J. Complex..

[5]  Daniel Silva Graça,et al.  Some recent developments on Shannon's General Purpose Analog Computer , 2004, Math. Log. Q..

[6]  Olivier Bournez Complexite algorithmique des systemes dynamiques continus et hybrides , 1999 .

[7]  Ahmed Bouajjani,et al.  Perturbed Turing machines and hybrid systems , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[8]  Pekka Orponen,et al.  A Survey of Continous-Time Computation Theory , 1997, Advances in Algorithms, Languages, and Complexity.

[9]  M. Hogarth Does general relativity allow an observer to view an eternity in a finite time? , 1992 .

[10]  Jerzy Mycka,et al.  The Computational Power of Continuous Dynamic Systems , 2004, MCU.

[11]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[12]  Eugene Asarin,et al.  Achilles and the Tortoise Climbing Up the Arithmetical Hierarchy , 1995, J. Comput. Syst. Sci..

[13]  A. Church Review: A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem , 1937 .

[14]  J. Myhill,et al.  A recursive function, defined on a compact interval and having a continuous derivative that is not recursive. , 1971 .

[15]  Norbert Th. Müller Subpolynomial Complexity Classes of Real Functions and Real Numbers , 1986, ICALP.

[16]  Ning Zhong,et al.  The ordinary differential equation defined by a computable function whose maximal interval of existence is non-computable , 2006 .

[17]  Manuel L. Campagnolo,et al.  Computational complexity of real valued recursive functions and analog circuits , 2001 .

[18]  Jerzy Mycka,et al.  What Lies Beyond the Mountains? , 2005, Bull. EATCS.

[19]  A. Grzegorczyk On the definitions of computable real continuous functions , 1957 .

[20]  Cristopher Moore,et al.  An Analog Characterization of the Subrecursive Functions , 2000 .

[21]  Jérôme Olivier Durand-Lose Abstract Geometrical Computation: Turing-Computing Ability and Undecidability , 2005, CiE.

[22]  Manuel Lameiras Campagnolo,et al.  The Methods of Approximation and Lifting in Real Computation , 2007, Electron. Notes Theor. Comput. Sci..

[23]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[24]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[25]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[26]  Warren D. Smith Church's thesis meets the N-body problem , 2006, Appl. Math. Comput..

[27]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[28]  P. Collins On the Computability of Reachable and Invariant Sets , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[30]  Jerzy Mycka,et al.  Real recursive functions and their hierarchy , 2004, J. Complex..

[31]  Klaus Weihrauch,et al.  Beyond the First Main Theorem - When Is the Solution of a Linear Cauchy Problem Computable? , 2006, TAMC.

[32]  Vannevar Bush,et al.  The differential analyzer. A new machine for solving differential equations , 1931 .

[33]  Jerzy Mycka Infinite limits and R-recursive functions , 2003, Acta Cybern..

[34]  L. Rubel,et al.  A differentially algebraic replacement theorem, and analog computability , 1987 .

[35]  Cristopher Moore,et al.  Closed-for Analytic Maps in One and Two Dimensions can Simulate Universal Turing Machines , 1999, Theor. Comput. Sci..

[36]  Lance Fortnow,et al.  Review: Michael Sipser, Introduction to the Theory of Computation , 1999, Journal of Symbolic Logic.

[37]  Hava T. Siegelmann,et al.  Neural networks and analog computation - beyond the Turing limit , 1999, Progress in theoretical computer science.

[38]  Akitoshi Kawamura Type-2 Computability and Moore's Recursive Functions , 2005, Electron. Notes Theor. Comput. Sci..

[39]  Peter Clote,et al.  Computational Models and Function Algebras , 1994, LCC.

[40]  Michael S. Branicky,et al.  Universal Computation and Other Capabilities of Hybrid and Continuous Dynamical Systems , 1995, Theor. Comput. Sci..

[41]  Ecnica De Lisboa,et al.  Computational complexity of real valued recursive functions and analog circuits , 2001 .

[42]  B. Jack Copeland,et al.  EVEN TURING MACHINES CAN COMPUTE UNCOMPUTABLE FUNCTIONS , 1998 .

[43]  José Félix Costa,et al.  Analog computers and recursive functions over the reals , 2003, J. Complex..

[44]  Daniel S. Graça,et al.  Robust Simulations of Turing Machines with Analytic Maps and Flows , 2005, CiE.

[45]  Olivier Bournez,et al.  An Analog Characterization of Elementarily Computable Functions over the Real Numbers , 2004, ICALP.

[46]  Lee A. Rubel,et al.  The Extended Analog Computer , 1993 .

[47]  J. Lygeros,et al.  Computability of finite-time reachable sets for hybrid systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[48]  Olivier Bournez,et al.  The General Purpose Analog Computer and Computable Analysis are Two Equivalent Paradigms of Analog Computation , 2006, TAMC.

[49]  Peter Clote,et al.  Computation Models and Function Algebras , 1999, Handbook of Computability Theory.

[50]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .