Binary phase masks for easy system alignment and basic aberration sensing with spatial light modulators in STED microscopy

[1]  Jacopo Antonello,et al.  Coma aberrations in combined two- and three-dimensional STED nanoscopy , 2016, Optics letters.

[2]  Martin J. Booth,et al.  Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. , 2016, Optics express.

[3]  M. König,et al.  Upgrade of a Scanning Confocal Microscope to a Single-Beam Path STED Microscope , 2015, PloS one.

[4]  M. Booth,et al.  Is phase-mask alignment aberrating your STED microscope? , 2015, Methods and applications in fluorescence.

[5]  D. Milkie,et al.  Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes , 2014, Nature Methods.

[6]  Martin J. Booth,et al.  Adaptive optical microscopy: the ongoing quest for a perfect image , 2014, Light: Science & Applications.

[7]  Mark A A Neil,et al.  3‐D stimulated emission depletion microscopy with programmable aberration correction , 2014, Journal of biophotonics.

[8]  Martin J Booth,et al.  Auto-aligning stimulated emission depletion microscope using adaptive optics. , 2013, Optics letters.

[9]  Martin J Booth,et al.  Adaptive optics enables 3D STED microscopy in aberrating specimens. , 2012, Optics express.

[10]  J. Wilhjelm,et al.  Quantitative pupil analysis in stimulated emission depletion microscopy using phase retrieval. , 2012, Optics letters.

[11]  M. Roeffaers,et al.  STimulated Emission Depletion Microscopy , 2011 .

[12]  Xiaodong Tao,et al.  Adaptive optics confocal microscopy using direct wavefront sensing. , 2011, Optics letters.

[13]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[14]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[15]  Ya Cheng,et al.  Effects of primary aberrations on the fluorescence depletion patterns of STED microscopy. , 2010, Optics express.

[16]  Bosanta R. Boruah,et al.  Focal field computation of an arbitrarily polarized beam using fast Fourier transforms , 2009 .

[17]  M. Neil,et al.  Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. , 2008, Optics letters.

[18]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[19]  Andreas Hermerschmidt,et al.  Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution , 2007, SPIE Optics + Optoelectronics.

[20]  S Bernet,et al.  Wavefront correction of spatial light modulators using an optical vortex image. , 2007, Optics express.

[21]  Theo Lasser,et al.  Fast focus field calculations. , 2006, Optics express.

[22]  Bosanta R Boruah,et al.  Susceptibility to and correction of azimuthal aberrations in singular light beams. , 2006, Optics express.

[23]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[24]  M. Gustafsson,et al.  Phase‐retrieved pupil functions in wide‐field fluorescence microscopy , 2004, Journal of microscopy.

[25]  Thomas A. Klar,et al.  Creating λ /3 focal holes with a Mach–Zehnder interferometer , 2003 .

[26]  T. Wilson,et al.  Adaptive aberration correction in a confocal microscope , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[28]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[29]  E. Wolf,et al.  Electromagnetic diffraction in optical systems - I. An integral representation of the image field , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.