Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping.
暂无分享,去创建一个
David J. Singh | David S. Parker | Ramamurthy Ramprasad | Hong Zhu | Matthew D. Belley | Hong Zhu | T. Borca-Tasciuc | D. Parker | Yanliang Zhang | G. Ramanath | R. Ramprasad | Theodorian Borca-Tasciuc | Ganpati Ramanath | Rutvik J. Mehta | M. Belley | Yanliang Zhang
[1] Ying-Jie Zhu,et al. Sb2Te3 nanostructures with various morphologies: rapid microwave solvothermal synthesis and Seebeck coefficients , 2011 .
[2] D. Rowe. CRC Handbook of Thermoelectrics , 1995 .
[3] C. Klinke,et al. ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. , 2010, ACS nano.
[4] Ying-Jie Zhu,et al. Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering , 2010 .
[5] L. Koudelka,et al. Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals , 1986 .
[6] L. Beneš,et al. Suppression of antistructural defects in crystals by an increased polarization of bonds , 1984 .
[7] T. Borca-Tasciuc,et al. Molecularly Protected Bismuth Telluride Nanoparticles: Microemulsion Synthesis and Thermoelectric Transport Properties , 2006 .
[8] L. Koudelka,et al. Antisite defects in narrow-gap layered chalcogenides of A2VB3VI type , 1988 .
[9] L. Saethre,et al. Relativistic corrections to reported sulfur 1s ionization energies , 1987 .
[10] M. K. Zhitinskaya,et al. The Nernst-Ettingshausen, Seebeck, and Hall effects in Sb2Te3 single crystals , 2002 .
[11] L. E. Shelimova,et al. Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects , 1995 .
[12] H. Hillebrecht,et al. An Aqueous-Chemistry Approach to Nano-Bismuth Telluride and Nano-Antimony Telluride as Thermoelectric Materials , 2012, Journal of Electronic Materials.
[13] Richard W Siegel,et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.
[14] Č. Drašar,et al. Non-stoichiometry of the crystal lattice of antimony telluride , 1995 .
[15] G. J. Snyder,et al. Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.
[16] T. Borca-Tasciuc,et al. Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals , 2012 .
[17] Clemens Burda,et al. Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. , 2010, Journal of the American Chemical Society.
[18] P. Ajayan,et al. Thermal and electrical transport along MWCNT arrays grown on Inconel substrates , 2008 .
[19] M. Stordeur,et al. Antisite defects in Sb2-xBixTe3 mixed crystals , 1988 .
[20] D. Rowe. Thermoelectrics Handbook , 2005 .
[21] M. Dresselhaus,et al. High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.
[22] George S. Nolas,et al. Thermoelectrics: Basic Principles and New Materials Developments , 2001 .
[23] J. Horák,et al. Antisite defects in BiSbTe3 crystals doped with indium atoms , 1994 .
[24] Gang Chen,et al. Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .
[25] C. Uher,et al. Doping and Defect Structure of Tetradymite-Type Crystals , 2010 .
[26] T. Chassé,et al. X‐Ray photoelectron valence band spectra from semiconductors Bi2Te3 and Sb2Te3 , 1985 .
[27] M. Kanatzidis. Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .
[28] G. Simon,et al. Investigations on a two‐valence band model for Sb2Te3 , 1981 .
[29] C. Karthik,et al. Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. , 2010, ACS nano.