Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping.

Antimony telluride has a low thermoelectric figure of merit (ZT < ∼0.3) because of a low Seebeck coefficient α arising from high degenerate hole concentrations generated by antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10-25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications.

[1]  Ying-Jie Zhu,et al.  Sb2Te3 nanostructures with various morphologies: rapid microwave solvothermal synthesis and Seebeck coefficients , 2011 .

[2]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[3]  C. Klinke,et al.  ZT enhancement in solution-grown Sb(2-x)BixTe3 nanoplatelets. , 2010, ACS nano.

[4]  Ying-Jie Zhu,et al.  Microwave-assisted rapid synthesis of Sb2Te3 nanosheets and thermoelectric properties of bulk samples prepared by spark plasma sintering , 2010 .

[5]  L. Koudelka,et al.  Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals , 1986 .

[6]  L. Beneš,et al.  Suppression of antistructural defects in crystals by an increased polarization of bonds , 1984 .

[7]  T. Borca-Tasciuc,et al.  Molecularly Protected Bismuth Telluride Nanoparticles: Microemulsion Synthesis and Thermoelectric Transport Properties , 2006 .

[8]  L. Koudelka,et al.  Antisite defects in narrow-gap layered chalcogenides of A2VB3VI type , 1988 .

[9]  L. Saethre,et al.  Relativistic corrections to reported sulfur 1s ionization energies , 1987 .

[10]  M. K. Zhitinskaya,et al.  The Nernst-Ettingshausen, Seebeck, and Hall effects in Sb2Te3 single crystals , 2002 .

[11]  L. E. Shelimova,et al.  Electroactive and electroinactive dopants in Bi2Te3 and their interaction with antisite defects , 1995 .

[12]  H. Hillebrecht,et al.  An Aqueous-Chemistry Approach to Nano-Bismuth Telluride and Nano-Antimony Telluride as Thermoelectric Materials , 2012, Journal of Electronic Materials.

[13]  Richard W Siegel,et al.  A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. , 2012, Nature materials.

[14]  Č. Drašar,et al.  Non-stoichiometry of the crystal lattice of antimony telluride , 1995 .

[15]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[16]  T. Borca-Tasciuc,et al.  Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals , 2012 .

[17]  Clemens Burda,et al.  Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. , 2010, Journal of the American Chemical Society.

[18]  P. Ajayan,et al.  Thermal and electrical transport along MWCNT arrays grown on Inconel substrates , 2008 .

[19]  M. Stordeur,et al.  Antisite defects in Sb2-xBixTe3 mixed crystals , 1988 .

[20]  D. Rowe Thermoelectrics Handbook , 2005 .

[21]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[22]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[23]  J. Horák,et al.  Antisite defects in BiSbTe3 crystals doped with indium atoms , 1994 .

[24]  Gang Chen,et al.  Bulk nanostructured thermoelectric materials: current research and future prospects , 2009 .

[25]  C. Uher,et al.  Doping and Defect Structure of Tetradymite-Type Crystals , 2010 .

[26]  T. Chassé,et al.  X‐Ray photoelectron valence band spectra from semiconductors Bi2Te3 and Sb2Te3 , 1985 .

[27]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[28]  G. Simon,et al.  Investigations on a two‐valence band model for Sb2Te3 , 1981 .

[29]  C. Karthik,et al.  Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. , 2010, ACS nano.