Nonequilibrium functional renormalization group with frequency-dependent vertex function: A study of the single-impurity Anderson model

We investigate nonequilibrium properties of the single impurity Anderson model by means of the functional renormalization group (fRG) within Keldysh formalism. We present how the level broadening Γ/2 can be used as flow parameter for the fRG. This choice preserves importan t aspects of the Fermi liquid behaviour that the model exhibits in case of particle-hole symmetry. An approximation scheme for the Keldysh fRG is developed which accounts for the frequency dependence of the two-particle vertex in a way similar but not equivalent to a recently published approximation to the equilibrium Matsubara fRG. Our method turns out to be a flexible tool for the study of weak to intermediate on-site interactions U . 3Γ. In equilibrium we find excellent agreement with NRG results for the linear conductance at finite gate vol tage, magnetic field, and temperature. In nonequilibrium, our results for the current agree well with TD-DMRG. For the nonlinear conductance as function of the bias voltage, we propose reliable results at finite magne tic field and finite temperature. Furthermore, we demonstrate the exponentially small scale of the Kondo temperature to appear in the second order derivative of the self-energy. We show that the approximation is, however, not able to reproduce the scaling of the effective mass at large interactions.

[1]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[2]  T. Ng,et al.  On-site Coulomb repulsion and resonant tunneling. , 1988, Physical review letters.

[3]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[4]  An Introduction to Real-Time Renormalization Group , 1999, cond-mat/9909400.

[5]  Kouwenhoven,et al.  A tunable kondo effect in quantum dots , 1998, Science.

[6]  Philip W. Anderson,et al.  Localized Magnetic States in Metals , 1961 .

[7]  Frithjof B Anders,et al.  Real-time dynamics in quantum-impurity systems: a time-dependent numerical renormalization-group approach. , 2005, Physical review letters.

[8]  P. Kopietz,et al.  A functional renormalization group approach to the Anderson impurity model , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Perturbation Expansion for the Anderson Hamiltonian. II , 1975 .

[10]  P. Schmitteckert,et al.  Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. , 2008, Physical review letters.

[11]  Wilkins,et al.  Probing the Kondo resonance by resonant tunneling through an Anderson impurity. , 1991, Physical review letters.

[12]  Philipp Werner,et al.  Diagrammatic Monte Carlo simulation of nonequilibrium systems , 2008, 0810.2345.

[13]  Nonequilibrium electron transport using the density matrix renormalization group method , 2004, cond-mat/0403759.

[14]  S. Kehrein Scaling and decoherence in the nonequilibrium Kondo model. , 2004, Physical review letters.

[15]  K. Wilson,et al.  Perturbative renormalization group for Hamiltonians. , 1994, Physical review. D, Particles and fields.

[16]  D. Schuricht,et al.  Dynamical spin-spin correlation functions in the Kondo model out of equilibrium , 2009, 0905.3095.

[17]  Jong E Han,et al.  Imaginary-time formulation of steady-state nonequilibrium: application to strongly correlated transport. , 2007, Physical review letters.

[18]  Tarucha,et al.  The kondo effect in the unitary limit , 2000, Science.

[19]  Martin Eckstein,et al.  Weak-coupling quantum Monte Carlo calculations on the Keldysh contour: theory and application to the current-voltage characteristics of the Anderson model , 2009, 0911.0587.

[20]  V. Janiš,et al.  Kondo behavior in the asymmetric Anderson model: Analytic approach , 2007, 0709.0913.

[21]  Transport coefficients of the Anderson model via the numerical renormalization group , 1993, cond-mat/9310032.

[22]  K. Eberl,et al.  Absence of odd-even parity behavior for Kondo resonances in quantum dots. , 2000, Physical review letters.

[23]  D. Langreth Linear and Nonlinear Response Theory with Applications , 1976 .

[24]  A functional renormalization group approach to zero-dimensional interacting systems , 2004, cond-mat/0404711.

[25]  P. Wölfle,et al.  Transport through a Kondo quantum dot: Functional RG approach , 2009, 0911.4383.

[26]  R. Egger,et al.  Comparative study of theoretical methods for non-equilibrium quantum transport , 2010, 1001.3773.

[27]  A. Rosch,et al.  Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man's scaling. , 2002, cond-mat/0202404.

[28]  A. Komnik Transient dynamics of the nonequilibrium Majorana resonant level model , 2009 .

[29]  C. Karrasch,et al.  Functional renormalization group approach to transport through correlated quantum dots , 2006 .

[30]  Nonequilibrium quantum criticality in open electronic systems. , 2006, Physical review letters.

[31]  E. Dagotto,et al.  Real-time simulations of nonequilibrium transport in the single-impurity Anderson model , 2009, 0903.2414.

[32]  Franz Wegner Flow‐equations for Hamiltonians , 1994 .

[33]  H. Smith,et al.  Quantum field-theoretical methods in transport theory of metals , 1986 .

[34]  Tim R. Morris The Exact renormalization group and approximate solutions , 1994 .

[35]  D. Schuricht,et al.  Relaxation versus decoherence: spin and current dynamics in the anisotropic Kondo model at finite bias and magnetic field. , 2009, Physical review letters.

[36]  R. Egger,et al.  Iterative real-time path integral approach to nonequilibrium quantum transport , 2008, 0802.3374.

[37]  Nonequilibrium functional renormalization group for interacting quantum systems. , 2007, Physical review letters.

[38]  Henri Orland,et al.  Quantum Many-Particle Systems , 1988 .

[39]  F. Anders Steady-state currents through nanodevices: a scattering-states numerical renormalization-group approach to open quantum systems. , 2008, Physical review letters.

[40]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[41]  A. Rosch,et al.  The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group , 2004, cond-mat/0408506.

[42]  Avraham Schiller,et al.  Spin precession and real-time dynamics in the Kondo model:Time-dependent numerical renormalization-group study , 2006 .

[43]  Manfred Salmhofer,et al.  Renormalization: An Introduction , 2007 .

[44]  S. Louie,et al.  GW approach to Anderson model out of equilibrium: Coulomb blockade and false hysteresis in the I − V characteristics , 2009, 0903.2683.

[45]  T. Gasenzer,et al.  Towards far-from-equilibrium quantum field dynamics: A functional renormalisation-group approach , 2008 .

[46]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[47]  A. M. Tsvelick,et al.  Exact results in the theory of magnetic alloys , 1983 .

[48]  T. Pruschke,et al.  A finite-frequency functional renormalization group approach to the single impurity Anderson model , 2008, 0806.0246.

[49]  A. Hewson,et al.  The Kondo Problem to Heavy Fermions: Addendum , 1993 .

[50]  M. Vojta,et al.  Equilibrium and nonequilibrium dynamics of the sub-Ohmic spin-boson model. , 2006, Physical review letters.

[51]  Wilkins,et al.  Resonant tunneling through an Anderson impurity. I. Current in the symmetric model. , 1992, Physical review. B, Condensed matter.

[52]  M. Salmhofer,et al.  Fermionic Renormalization Group Flows: Technique and Theory , 2001 .

[53]  F. Reininghaus,et al.  Real-time renormalization group in frequency space: A two-loop analysis of the nonequilibrium anisotropic Kondo model at finite magnetic field , 2009, 0902.1446.

[54]  G. Vidal,et al.  Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2004 .

[55]  Michael Thoss,et al.  Numerically exact quantum dynamics for indistinguishable particles: the multilayer multiconfiguration time-dependent Hartree theory in second quantization representation. , 2009, The Journal of chemical physics.

[56]  A. Leggett,et al.  Dynamics of the dissipative two-state system , 1987 .

[57]  S. White,et al.  Real-time evolution using the density matrix renormalization group. , 2004, Physical review letters.

[58]  V. Zlatić,et al.  Series expansion for the symmetric Anderson Hamiltonian , 1983 .

[59]  M. Eastwood,et al.  A local moment approach to the Anderson model , 1998 .

[60]  D. Mattis,et al.  Localized Magnetic Moments in Dilute Metallic Alloys: Correlation Effects , 1965 .

[61]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[62]  M. Keil,et al.  Real-time renormalization-group analysis of the dynamics of the spin-boson model , 2000, cond-mat/0011051.

[63]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[64]  Wilson,et al.  Renormalization of Hamiltonians. , 1993, Physical review. D, Particles and fields.

[65]  Jie Liu,et al.  Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. , 2003, Journal of the American Chemical Society.

[66]  U. Weiss Quantum Dissipative Systems , 1993 .

[67]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[68]  P. Werner,et al.  Transient dynamics of the Anderson impurity model out of equilibrium , 2008, 0808.0442.

[69]  N. Andrei,et al.  Nonequilibrium transport in quantum impurity models: the Bethe ansatz for open systems. , 2005, Physical review letters.

[70]  Functional renormalization group for nonequilibrium quantum many-body problems , 2006, cond-mat/0609457.