Oligomeric interface modulation causes misregulation of purine 5´-nucleotidase in relapsed leukemia

[1]  U. Hofmann,et al.  NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity , 2016, Nature Genetics.

[2]  Preeti,et al.  Identification of Noncompetitive Inhibitors of Cytosolic 5'-Nucleotidase II Using a Fragment-Based Approach. , 2015, Journal of medicinal chemistry.

[3]  V. Beneš,et al.  Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation , 2015, Haematologica.

[4]  Martin Strohalm,et al.  Mapping protein structural changes by quantitative cross-linking. , 2015, Methods.

[5]  T. Helleday,et al.  Crystal structure, biochemical and cellular activities demonstrate separate functions of MTH1 and MTH2 , 2015, Nature Communications.

[6]  A. Ferrando,et al.  Negative feedback–defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL , 2015, Nature Medicine.

[7]  Jing Ma,et al.  Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia , 2015, Nature Communications.

[8]  M. Relling,et al.  Inherited NUDT15 variant is a genetic determinant of mercaptopurine intolerance in children with acute lymphoblastic leukemia. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  B. Delabarre,et al.  Action at a distance: allostery and the development of drugs to target cancer cell metabolism. , 2014, Chemistry & biology.

[10]  Jianjun Liu,et al.  A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia , 2014, Nature Genetics.

[11]  A. Friedler,et al.  Allosteric modulation of protein oligomerization: an emerging approach to drug design , 2014, Front. Chem..

[12]  B. Vojtesek,et al.  The Assembly and Intermolecular Properties of the Hsp70-Tomm34-Hsp90 Molecular Chaperone Complex* , 2014, The Journal of Biological Chemistry.

[13]  Jennifer B Dennison,et al.  Antitumor Activity of the Glutaminase Inhibitor CB-839 in Triple-Negative Breast Cancer , 2014, Molecular Cancer Therapeutics.

[14]  R. Nussinov,et al.  Multiple conformational selection and induced fit events take place in allosteric propagation. , 2014, Biophysical chemistry.

[15]  R. Itoh Enzymatic properties and physiological roles of cytosolic 5'-nucleotidase II. , 2013, Current medicinal chemistry.

[16]  P. L. Ipata,et al.  The functional logic of cytosolic 5'-nucleotidases. , 2013, Current medicinal chemistry.

[17]  R. Pesi,et al.  A native electrophoretic technique to study oligomerization and activity of cytosolic 5′-nucleotidase II , 2013, Analytical and Bioanalytical Chemistry.

[18]  Fang Wang,et al.  Targeted Inhibition of Mutant IDH2 in Leukemia Cells Induces Cellular Differentiation , 2013, Science.

[19]  J. Aster,et al.  Resistance revealed in acute lymphoblastic leukemia , 2013, Nature Medicine.

[20]  W. Evans,et al.  Relapse specific mutations in NT5C2 in childhood acute lymphoblastic leukemia , 2013, Nature Genetics.

[21]  A. Ferrando,et al.  Activating mutations in the NT5C2 nucleotidase gene drive chemotherapy resistance in relapsed ALL , 2013, Nature Medicine.

[22]  Uwe Mueller,et al.  Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin , 2012, Journal of synchrotron radiation.

[23]  Nadezhda T. Doncheva,et al.  Topological analysis and interactive visualization of biological networks and protein structures , 2012, Nature Protocols.

[24]  Maxim V. Petoukhov,et al.  New developments in the ATSAS program package for small-angle scattering data analysis , 2012, Journal of applied crystallography.

[25]  Abhishek K. Jha,et al.  Full-length human glutaminase in complex with an allosteric inhibitor. , 2011, Biochemistry.

[26]  K. Walldén,et al.  Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5'-nucleotidase II. , 2011, Journal of molecular biology.

[27]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[28]  R. Pesi,et al.  Active and regulatory sites of cytosolic 5′‐nucleotidase , 2010, The FEBS journal.

[29]  R. Nussinov,et al.  The origin of allosteric functional modulation: multiple pre-existing pathways. , 2009, Structure.

[30]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[31]  T. Carlomagno Ligand-target interactions: what can we learn from NMR? , 2005, Annual review of biophysics and biomolecular structure.

[32]  A. Scaloni,et al.  Mechanistic studies on bovine cytosolic 5'-nucleotidase II, an enzyme belonging to the HAD superfamily. , 2004, European journal of biochemistry.

[33]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[34]  K Henrick,et al.  Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. , 2004, Acta crystallographica. Section D, Biological crystallography.

[35]  András Fiser,et al.  ModLoop: automated modeling of loops in protein structures , 2003, Bioinform..

[36]  V. Bianchi,et al.  Mammalian 5′-Nucleotidases* , 2003, Journal of Biological Chemistry.

[37]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[38]  J. Balzarini,et al.  Cytosolic and mitochondrial deoxyribonucleotidases: activity with substrate analogs, inhibitors and implications for therapy. , 2003, Biochemical pharmacology.

[39]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[40]  B. Mitchell,et al.  ATP and phosphate reciprocally affect subunit association of human recombinant High Km 5'-nucleotidase. Role for the C-terminal polyglutamic acid tract in subunit association and catalytic activity. , 2001, European journal of biochemistry.

[41]  J. Mackey,et al.  Expression of high Km 5'-nucleotidase in leukemic blasts is an independent prognostic factor in adults with acute myeloid leukemia. , 2001, Blood.

[42]  V. Micheli,et al.  Cytosolic 5′‐nucleotidase hyperactivity in erythrocytes of Lesch–Nyhan syndrome patients , 2000, Neuroreport.

[43]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[44]  S. Inoue,et al.  Molecular cloning of human cytosolic purine 5'-nucleotidase. , 1994, Biochemical and biophysical research communications.

[45]  M. Turriani,et al.  The bifunctional cytosolic 5'-nucleotidase: regulation of the phosphotransferase and nucleotidase activities. , 1994, Archives of biochemistry and biophysics.

[46]  D. Svergun,et al.  Synchrotron radiation solution X-ray scattering study of the pH dependence of the quaternary structure of yeast pyruvate decarboxylase. , 1992, Biochemistry.

[47]  Dmitri I. Svergun,et al.  Determination of the regularization parameter in indirect-transform methods using perceptual criteria , 1992 .

[48]  V. Madrid-Marina,et al.  High Km soluble 5'-nucleotidase from human placenta. Properties and allosteric regulation by IMP and ATP. , 1988, The Journal of biological chemistry.

[49]  R. Itoh Studies on some molecular properties of cytosol 5'-nucleotidase from rat liver. , 1982, Biochimica et biophysica acta.

[50]  R. Itoh Regulation of cytosol 5'-nucleotidase by adenylate energy charge. , 1981, Biochimica et biophysica acta.

[51]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[52]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.