Computable Structures: Presentations Matter

The computability properties of a relation R not included in the language of a computable structure A can vary from one computable presentation to another. We describe some classic results giving conditions onA orR that restrict the possible variations in the computable dimension of A (i.e. the number of isomorphic copies of A up to computable isomorphism) and the computational complexity ofR. For example, what conditions guarantee thatA is computably categorical (i.e. of dimension 1) or that R is intrinsically computable (i.e. computable in every presentation). In the absence of such conditions, we discuss the possible computable dimensions ofA and variations (in terms of Turing degree) of R in different presentations (the degree spectrum of R). In particular, various classic theorems and more recent ones of the author, B. Khoussainov, D. Hirschfeldt and others about the possible degree spectra of computable relations on computable structures and the connections with computable dimension and categoricity will be discussed both in general model theoretic settings and in restricted classes of structures such as graphs, linear and partial orderings, lattices, Boolean algebras, Abelian and nilpotent groups, rings, integral domains, and real or algebraically closed fields.

[1]  V. Harizanov Pure computable model theory , 1998 .

[2]  Jeffrey B. Remmel Recursively categorical linear orderings , 1981 .

[3]  Edward R. Griffor Handbook of Computability Theory , 1999, Handbook of Computability Theory.

[4]  Valentina S. Harizanov Some Effects of Ash-Nerode and Other Decidability Conditions on Degree Spectra , 1991, Ann. Pure Appl. Log..

[5]  R. Camerlo,et al.  The completeness of the isomorphism relation for countable Boolean algebras , 2000 .

[6]  Valentina S. Harizanov The Possible Turing Degree of the Nonzero Member in a Two Element Degree Spectrum , 1993, Ann. Pure Appl. Log..

[7]  S. S. Goncharov,et al.  Chapter 2 Elementary theories and their constructive models , 1998 .

[8]  Theodore A. Slaman,et al.  Relative to any nonrecursive set , 1998 .

[9]  Richard A. Shore,et al.  Computable Isomorphisms, Degree Spectra of Relations, and Scott Families , 1998, Ann. Pure Appl. Log..

[10]  A. T. Nurtazin,et al.  Strong and weak constructivization and computable families , 1974 .

[11]  Greg Hjorth,et al.  Borel Equivalence Relations and Classifications of Countable Models , 1996, Ann. Pure Appl. Log..

[12]  Verena H. Dyson Review: A. I. Mal'cev, (Ob odnorn sootvetstvii mezdu kol'cami i grupparni):On a Correspondence Between Rings and Groups , 1965 .

[13]  S. S. Goncharov,et al.  Autostability of models and Abelian groups , 1980 .

[14]  Richard A. Shore,et al.  Computably categorical structures and expansions by constants , 1999, Journal of Symbolic Logic.

[15]  Richard A. Shore,et al.  Erratum to "Computable Isomorphisms, Degree Spectra of Relations, and Scott Families" , 1999, Ann. Pure Appl. Log..

[16]  Richard A. Shore,et al.  Models and Computability: Effective Model Theory: The Number of Models and Their Complexity , 1999 .

[17]  S. S. Goncharov,et al.  The quantity of nonautoequivalent constructivizations , 1977 .

[18]  Stephan Wehner,et al.  Enumerations, countable structures and Turing degrees , 1998 .

[19]  A. Nerode,et al.  Recursively enumerable vector spaces , 1977 .

[20]  Denis R. Hirschfeldt,et al.  Degree Spectra of Relations on Computable Structures , 2000, Bulletin of Symbolic Logic.

[21]  Anil Nerode,et al.  Handbook of Recursive Mathematics , 1998 .

[22]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[23]  S. S. Goncharov,et al.  Constructivizability of superatomic Boolean algebras , 1973 .

[24]  H. Jerome Keisler,et al.  Model theory, Third Edition , 1992, Studies in logic and the foundations of mathematics.

[25]  Richard A. Shore,et al.  Solutions of the Goncharov-Millar and Degree Spectra Problems in The Theory of Computable Models , 2000 .

[26]  Harvey M. Friedman,et al.  A Borel reductibility theory for classes of countable structures , 1989, Journal of Symbolic Logic.

[27]  N. S. Romanovskii,et al.  Nilpotent groups of finite algorithmic dimension , 1989 .

[28]  Terrence Millar Recursive Categoricity and Persistence , 1986, J. Symb. Log..

[29]  S. Goncharov,et al.  Chapter 6 Autostable models and algorithmic dimensions , 1998 .

[30]  S. S. Goncharov,et al.  Autostability and computable families of constructivizations , 1975 .

[31]  A. Nerode,et al.  Effective content of field theory , 1979 .

[32]  Alan H. Mekler Stability of Nilpotent Groups of Class 2 and Prime Exponent , 1981, J. Symb. Log..

[33]  Julia F. Knight,et al.  Permitting, Forcing, and Copying of a Given Recursive Relation , 1997, Ann. Pure Appl. Log..

[34]  S. S. Goncharov,et al.  Autostability of models , 1980 .

[35]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[36]  Jeffrey B. Remmel,et al.  Recursive isomorphism types of recursive Boolean algebras , 1981, Journal of Symbolic Logic.