Sliding Mode Multiobserver for Time-Varying Delay Nonlinear Systems Based on Discrete Uncoupled Multimodel

The present paper deals with the design of sliding mode multiobserver for nonlinear systems with delayed measurements. The discrete uncoupled state multimodel is exploited to describe the global behavior of nonlinear systems. Therefore, the complexity of the latter can be reduced by its decomposition into a finite number of partial models. The proposed sliding mode multiobserver is designed based on this uncoupled multimodel approach. Sufficient conditions are formulated in terms of linear matrix inequalities in order to ensure the asymptotic stability of the designed multiobserver. Illustrative examples are included to show the effectiveness of the proposed strategy.

[1]  Hamid Reza Karimi,et al.  SPECIAL ISSUE ON ‘SMC based observation, identification, uncertainties compensation and fault detection’ , 2019, Asian Journal of Control.

[2]  Nesrine Montacer,et al.  A Sliding Mode Multiobserver Based on an Uncoupled Multimodel: An Application on a Transesterification Reaction , 2018, Asian Journal of Control.

[3]  Tong Heng Lee,et al.  A less conservative robust stability test for linear uncertain time-delay systems , 2006, IEEE Trans. Autom. Control..

[4]  Pierre-Alexandre Bliman,et al.  LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-Krasovskii functionals , 2001, Syst. Control. Lett..

[5]  Mehrdad Saif,et al.  Observer design and fault diagnosis for state-retarded dynamical systems , 1998, Autom..

[6]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[7]  A. J. Koshkouei,et al.  Sliding Mode Controller-observer Design for Siso Linear Systems , 1998, Int. J. Syst. Sci..

[8]  Ligang Wu,et al.  Optimal Guaranteed Cost Sliding-Mode Control of Interval Type-2 Fuzzy Time-Delay Systems , 2018, IEEE Transactions on Fuzzy Systems.

[9]  Rong-Jyue Wang Observer-based fuzzy control of fuzzy time-delay systems with parametric uncertainties , 2004, Int. J. Syst. Sci..

[10]  B. Marx,et al.  Nonlinear system identification using heterogeneous multiple models , 2013, Int. J. Appl. Math. Comput. Sci..

[11]  J. Ragot,et al.  Fault detection and isolation using sliding mode observer for uncertain Takagi-Sugeno fuzzy model , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[12]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[13]  S. Spurgeon,et al.  On the development of discontinuous observers , 1994 .

[14]  Goshaidas Ray,et al.  Stability analysis for continuous system with additive time-varying delays: A less conservative result , 2010, Appl. Math. Comput..

[15]  Anis Messaoud,et al.  Robust multiobserver design for discrete uncertain nonlinear systems with time-varying delay , 2018, Trans. Inst. Meas. Control.

[16]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in System and Control Theory , 1994, Studies in Applied Mathematics.

[17]  Yong-Yan Cao,et al.  Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models , 2001, Fuzzy Sets Syst..

[18]  Ahmed El Hajjaji,et al.  Adaptive Fuzzy Observer-Based Fault-Tolerant Control for Takagi–Sugeno Descriptor Nonlinear Systems with Time Delay , 2018, Circuits Syst. Signal Process..

[19]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[20]  B. Marx,et al.  A DECOUPLED MULTIPLE MODEL APPROACH FOR STATE ESTIMATION OF NONLINEAR SYSTEMS SUBJECT TO DELAYED MEASUREMENTS , 2007 .

[21]  Alfredo Germani,et al.  A new approach to state observation of nonlinear systems with delayed output , 2002, IEEE Trans. Autom. Control..

[22]  Nikolaos Kazantzis,et al.  Nonlinear observer design in the presence of delayed output measurements , 2005, Syst. Control. Lett..

[23]  Jean-Pierre Richard,et al.  Stability of some linear systems with delays , 1999, IEEE Trans. Autom. Control..

[24]  Ridha Ben Abdennour,et al.  An Experimental Validation of a New Method for Multimodel Identification , 2018 .

[25]  R. Rajamani Observers for Lipschitz nonlinear systems , 1998, IEEE Trans. Autom. Control..

[26]  Fang Wang,et al.  Adaptive Hyperbolic Tangent Sliding-Mode Control for Building Structural Vibration Systems for Uncertain Earthquakes , 2018, IEEE Access.

[27]  Frédéric Gouaisbaut,et al.  Construction of Lyapunov-Krasovskii functional for time-varying delay systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[28]  Jean-Pierre Richard,et al.  Time-delay systems: an overview of some recent advances and open problems , 2003, Autom..

[29]  Malek Ghanes,et al.  Homogeneous Control of Pneumatic Cylinders Based on Time Delay Model and Artstein Transformation , 2017 .

[30]  Alan Solon Ivor Zinober,et al.  Sliding mode state observers for discrete-time linear systems , 2002, Int. J. Syst. Sci..

[31]  H. Karimi,et al.  Robust Observer Design for Takagi-Sugeno Fuzzy Systems with Mixed Neutral and Discrete Delays and Unknown Inputs , 2012 .

[32]  Dimitri Breda,et al.  Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations , 2005, SIAM J. Sci. Comput..

[33]  Dimitar Filev Fuzzy modeling of complex systems , 1991, Int. J. Approx. Reason..

[34]  A. Hurwitz,et al.  Über die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt: Mathematische Annalen, Bd. 46, 1895, S. 273–284 , 1963 .

[35]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[36]  P. Bergsten,et al.  Sliding mode observer for a Takagi Sugeno fuzzy system , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[37]  M. Mihoub,et al.  Fuzzy discontinuous term for a second order asymptotic DSMC: An experimental validation on a chemical reactor , 2011 .

[38]  Yong-Yan Cao,et al.  Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach , 2000, IEEE Trans. Fuzzy Syst..

[39]  Carlos Canudas de Wit,et al.  Sliding observers for robot manipulators , 1991, Autom..

[40]  Olivier Sename,et al.  New trends in design of observers for time-delay systems , 2001, Kybernetika.

[41]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[42]  Emilia Fridman,et al.  New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems , 2001, Syst. Control. Lett..

[43]  D. Khadija,et al.  Discrete second order sliding mode control for nonlinear multivariable systems , 2012, 2012 16th IEEE Mediterranean Electrotechnical Conference.

[44]  Karim Dahech,et al.  A sliding mode observer for uncertain nonlinear systems based on multiple models approach , 2017, Int. J. Autom. Comput..

[45]  D. Luenberger An introduction to observers , 1971 .

[46]  Masayoshi Tomizuka,et al.  Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems , 1996, IEEE Trans. Autom. Control..

[47]  Vladimir L. Kharitonov,et al.  Exponential estimates for retarded time-delay systems: an LMI approach , 2005, IEEE Transactions on Automatic Control.

[48]  Shun-Hung Tsai,et al.  A Global Exponential Fuzzy Observer Design for Time-Delay Takagi–Sugeno Uncertain Discrete Fuzzy Bilinear Systems With Disturbance , 2012, IEEE Transactions on Fuzzy Systems.

[49]  Peng Shi,et al.  Output-Feedback Control for T–S Fuzzy Delta Operator Systems With Time-Varying Delays via an Input–Output Approach , 2015, IEEE Transactions on Fuzzy Systems.

[50]  Yang Tao,et al.  Sliding Mode Observer-Based Fault Detection of Distributed Networked Control Systems with Time Delay , 2012, Circuits Syst. Signal Process..