Efficient electrocatalytic CO2 reduction on a three-phase interface

[1]  Danielle A. Salvatore,et al.  Electrolytic CO2 Reduction in a Flow Cell. , 2018, Accounts of chemical research.

[2]  Haotian Wang,et al.  Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction , 2018, Nature Catalysis.

[3]  G. Wallace,et al.  An electrochemical cell with Gortex-based electrodes capable of extracting pure hydrogen from highly dilute hydrogen–methane mixtures , 2018 .

[4]  T. Fujigaya,et al.  Insights into the Low Overpotential Electroreduction of CO2 to CO on a Supported Gold Catalyst in an Alkaline Flow Electrolyzer , 2018 .

[5]  Guenter Schmid,et al.  Technical photosynthesis involving CO2 electrolysis and fermentation , 2018, Nature Catalysis.

[6]  M. Kanan,et al.  Selective increase in CO2 electroreduction activity at grain-boundary surface terminations , 2017, Science.

[7]  T. Jaramillo,et al.  Electrochemical CO2 Reduction over Compressively Strained CuAg Surface Alloys with Enhanced Multi-Carbon Oxygenate Selectivity. , 2017, Journal of the American Chemical Society.

[8]  Liping Chen,et al.  Enhanced Photocatalytic Reaction at Air-Liquid-Solid Joint Interfaces. , 2017, Journal of the American Chemical Society.

[9]  Yuyan Shao,et al.  Advanced catalyst supports for PEM fuel cell cathodes , 2016 .

[10]  Alexis T Bell,et al.  Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts. , 2016, Physical chemistry chemical physics : PCCP.

[11]  A. Bell,et al.  Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO2 over Ag and Cu. , 2016, Journal of the American Chemical Society.

[12]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[13]  Y. Surendranath,et al.  Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity , 2016, Proceedings of the National Academy of Sciences.

[14]  Pamela A. Silver,et al.  Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis , 2016, Science.

[15]  Hongxia Wang,et al.  Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution , 2016 .

[16]  P. Strasser,et al.  Nanostructured electrocatalysts with tunable activity and selectivity , 2016 .

[17]  Xun Lu,et al.  The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. , 2016, Physical chemistry chemical physics : PCCP.

[18]  Guido Mul,et al.  Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction , 2016, Nature Communications.

[19]  P. Strasser,et al.  Controlling the selectivity of CO2 electroreduction on copper: The effect of the electrolyte concentration and the importance of the local pH , 2016 .

[20]  Hung-Chih Chang,et al.  Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. , 2015, Nature materials.

[21]  Y. Surendranath,et al.  Mesostructure-Induced Selectivity in CO2 Reduction Catalysis. , 2015, Journal of the American Chemical Society.

[22]  Kyoungdoug Min,et al.  A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation , 2015 .

[23]  Chao Wang,et al.  Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction. , 2015, Nano letters.

[24]  G. U. Kulkarni,et al.  Facet selective etching of Au microcrystallites , 2015, Nano Research.

[25]  Paul J. A. Kenis,et al.  Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer , 2015 .

[26]  P. Ajayan,et al.  Achieving Highly Efficient, Selective, and Stable CO2 Reduction on Nitrogen-Doped Carbon Nanotubes. , 2015, ACS nano.

[27]  Christopher J. Chang,et al.  Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. , 2015, Nano letters.

[28]  Shoushan Fan,et al.  Grain-boundary-dependent CO2 electroreduction activity. , 2015, Journal of the American Chemical Society.

[29]  Jeffrey A. Reimer,et al.  Cooperative insertion of CO2 in diamine-appended metal-organic frameworks , 2015, Nature.

[30]  Abdullah M. Asiri,et al.  Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles , 2014, Nature Communications.

[31]  K. Phani,et al.  Selective reduction of CO2 to formate through bicarbonate reduction on metal electrodes: new insights gained from SG/TC mode of SECM. , 2014, Chemical communications.

[32]  N. Wagner,et al.  Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes , 2014, Journal of Applied Electrochemistry.

[33]  P. Král,et al.  Robust carbon dioxide reduction on molybdenum disulphide edges , 2014, Nature Communications.

[34]  Feng Jiao,et al.  A selective and efficient electrocatalyst for carbon dioxide reduction , 2014, Nature Communications.

[35]  Zhigang Shao,et al.  Study on hydrophobicity degradation of gas diffusion layer in proton exchange membrane fuel cells , 2013 .

[36]  Haifeng Lv,et al.  Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. , 2013, Journal of the American Chemical Society.

[37]  Clara-Mihaela Ionescu,et al.  The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics , 2013 .

[38]  Nanfeng Zheng,et al.  Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications , 2013 .

[39]  Matthew W. Kanan,et al.  Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. , 2012, Journal of the American Chemical Society.

[40]  J. Benziger,et al.  Water Flow in, Through, and Around the Gas Diffusion Layer , 2012 .

[41]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[42]  Matthew W Kanan,et al.  CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. , 2012, Journal of the American Chemical Society.

[43]  J. Xie,et al.  Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties , 2012 .

[44]  P. Kenis,et al.  Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials , 2011, Science.

[45]  Kyoungdoug Min,et al.  Experimental study of the effect of dissolution on the gas diffusion layer in polymer electrolyte membrane fuel cells , 2011 .

[46]  M. Hori,et al.  Controlling gas diffusion layer oxidation by homogeneous hydrophobic coating for polymer electrolyte , 2011 .

[47]  R. Borup,et al.  In Situ and Ex Situ Characterization of Carbon Corrosion in PEMFCs , 2010 .

[48]  Shana O Kelley,et al.  Nanostructuring of sensors determines the efficiency of biomolecular capture. , 2010, Analytical chemistry.

[49]  Zidong Wei,et al.  A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells , 2009 .

[50]  Xianguo Li,et al.  Characterization of flooding and two-phase flow in polymer electrolyte membrane fuel cell stacks , 2009 .

[51]  S. Basu Recent trends in fuel cell science and technology , 2007 .

[52]  M. Gattrell,et al.  Calculation for the cathode surface concentrations in the electrochemical reduction of CO2 in KHCO3 solutions , 2006 .

[53]  Hui Li,et al.  The Electro-Reduction of Carbon Dioxide in a Continuous Reactor , 2005 .

[54]  Bernard Sapoval,et al.  Design of peripheral airways for efficient gas exchange , 2005, Respiratory Physiology & Neurobiology.

[55]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[56]  S. Ted Oyama,et al.  Oxygen chemisorption and laser Raman spectroscopy of unsupported and silica-supported vanadium oxide catalysts , 1989 .

[57]  B. Conway,et al.  Modern aspects of electrochemistry No. 18 , 1986 .