Photobactericidal activity activated by thiolated gold nanoclusters at low flux levels of white light

[1]  John Jernigan,et al.  Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections — United States , 2019, MMWR. Morbidity and mortality weekly report.

[2]  Yufeng Zheng,et al.  Light-Activated Rapid Disinfection by Accelerated Charge Transfer in Red Phosphorus/ZnO Heterointerface , 2019, Small Methods.

[3]  B. Sharma-Kuinkel,et al.  Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research , 2019, Nature Reviews Microbiology.

[4]  R. Hadfield,et al.  Enhanced Optics for Time-Resolved Singlet Oxygen Luminescence Detection , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  Jingjing Xu,et al.  BiOCl Decorated NaNbO3 Nanocubes: A Novel p-n Heterojunction Photocatalyst With Improved Activity for Ofloxacin Degradation , 2018, Front. Chem..

[6]  Yi Luo,et al.  Energy Materials Design for Steering Charge Kinetics , 2018, Advanced materials.

[7]  Robin Patel,et al.  Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis , 2018, Nature Microbiology.

[8]  K. Holt,et al.  Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa , 2018, Nature Microbiology.

[9]  G. Carter,et al.  Increasing tolerance of hospital Enterococcus faecium to handwash alcohols , 2018, Science Translational Medicine.

[10]  E. Choi,et al.  Scavenging effects of ascorbic acid and mannitol on hydroxyl radicals generated inside water by an atmospheric pressure plasma jet , 2018, AIP Advances.

[11]  I. Parkin,et al.  Photobactericidal Activity of Dual Dyes Encapsulated in Silicone Enhanced by Silver Nanoparticles , 2018, ACS omega.

[12]  W. Schaffner,et al.  Invasive Methicillin-Resistant Staphylococcus aureus Infections Among Persons Who Inject Drugs — Six Sites, 2005–2016 , 2018, MMWR. Morbidity and mortality weekly report.

[13]  S. Pillai,et al.  Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances , 2018, Applied Catalysis B: Environmental.

[14]  B. Moudgil,et al.  Contaminant-Activated Visible Light Photocatalysis , 2018, Scientific Reports.

[15]  Wei Hu,et al.  Two-dimensional van der Waals heterojunctions for functional materials and devices , 2017 .

[16]  Dongil Lee,et al.  Energy Gap Law for Exciton Dynamics in Gold Cluster Molecules. , 2017, The journal of physical chemistry letters.

[17]  M. I. Setyawati,et al.  Antimicrobial Gold Nanoclusters. , 2017, ACS nano.

[18]  T. Pradeep,et al.  Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. , 2017, Chemical reviews.

[19]  Luyang Chen,et al.  Constructing TiO2 decorated Bi2WO6 architectures with enhanced visible-light-driven photocatalytic activity , 2017 .

[20]  Cassandra Willyard The drug-resistant bacteria that pose the greatest health threats , 2017, Nature.

[21]  Yayuan Liu,et al.  Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. , 2016, Nature nanotechnology.

[22]  I. Parkin,et al.  White Light-Activated Antimicrobial Paint using Crystal Violet. , 2016, ACS applied materials & interfaces.

[23]  I. Parkin,et al.  White light-activated antimicrobial surfaces: effect of nanoparticles type on activity. , 2016, Journal of materials chemistry. B.

[24]  W. J. Peveler,et al.  Lethal photosensitisation of Staphylococcus aureus and Escherichia coli using crystal violet and zinc oxide-encapsulated polyurethane. , 2015, Journal of materials chemistry. B.

[25]  I. Parkin,et al.  The antibacterial properties of light-activated polydimethylsiloxane containing crystal violet , 2014 .

[26]  I. Parkin,et al.  Light-activated antimicrobial surfaces with enhanced efficacy induced by a dark-activated mechanism , 2014 .

[27]  J. Edwards,et al.  National and state healthcare-associated infections progress report , 2014 .

[28]  Michael R Hamblin,et al.  Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. , 2013, FEMS microbiology reviews.

[29]  Michael T. Wilson,et al.  Photobactericidal polymers; the incorporation of crystal violet and nanogold into medical grade silicone , 2013 .

[30]  J. A. Salkeld,et al.  Evidence that contaminated surfaces contribute to the transmission of hospital pathogens and an overview of strategies to address contaminated surfaces in hospital settings. , 2013, American journal of infection control.

[31]  Michael T. Wilson,et al.  Incorporation of methylene blue and nanogold into polyvinyl chloride catheters; a new approach for light-activated disinfection of surfaces , 2012 .

[32]  F. Manian,et al.  Isolation of Acinetobacter baumannii Complex and Methicillin-Resistant Staphylococcus aureus from Hospital Rooms Following Terminal Cleaning and Disinfection: Can We Do Better? , 2011, Infection Control & Hospital Epidemiology.

[33]  Hicham A. Chibli,et al.  Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation. , 2011, Nanoscale.

[34]  I. Parkin,et al.  Nanoparticulate silver coated-titania thin films-Photo-oxidative destruction of stearic acid under different light sources and antimicrobial effects under hospital lighting conditions , 2011 .

[35]  J. Otter,et al.  Minimum Infective Dose of the Major Human Respiratory and Enteric Viruses Transmitted Through Food and the Environment , 2011, Food and Environmental Virology.

[36]  M. Iturriza-Gómara,et al.  Norovirus in the hospital setting: virus introduction and spread within the hospital environment. , 2011, The Journal of hospital infection.

[37]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[38]  Elias K. Stefanakos,et al.  A review of the mechanisms and modeling of photocatalytic disinfection , 2010 .

[39]  W. Rutala,et al.  A Quantitative Approach to Defining “High-Touch” Surfaces in Hospitals , 2010, Infection Control & Hospital Epidemiology.

[40]  I. Parkin,et al.  Sulfur‐ and Nitrogen‐Doped Titania Biomaterials via APCVD , 2010 .

[41]  Michael T. Wilson,et al.  Antimicrobial activity of methylene blue and toluidine blue O covalently bound to a modified silicone polymer surface , 2009 .

[42]  Michael T. Wilson,et al.  Toluidine blue-containing polymers exhibit potent bactericidal activity when irradiated with red laser light , 2009 .

[43]  Graham White,et al.  Lighting guide 2: hospitals and health care buildings , 2008 .

[44]  R. Whittal,et al.  Interferences and contaminants encountered in modern mass spectrometry. , 2008, Analytica chimica acta.

[45]  G. Schatz,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[46]  R. Weinstein,et al.  Risk of Hand or Glove Contamination After Contact With Patients Colonized With Vancomycin-Resistant Enterococcus or the Colonized Patients' Environment , 2008, Infection Control & Hospital Epidemiology.

[47]  C. Robinson,et al.  Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. , 2006, The Journal of antimicrobial chemotherapy.

[48]  John H. Xin,et al.  Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities , 2005 .

[49]  Michael R Hamblin,et al.  Photodynamic therapy: a new antimicrobial approach to infectious disease? , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[50]  M. Wainwright,et al.  Photodynamic antimicrobial chemotherapy (PACT). , 1998, Journal of Antimicrobial Chemotherapy.

[51]  B. Farr,et al.  Disinfection of Hospital Rooms Contaminated With Vancomycin-Resistant Entemcocms faecium , 1998, Infection Control & Hospital Epidemiology.

[52]  J. Boyce,et al.  Environmental Contamination Due to Methicillin-Resistant Staphylococcus aureus Possible Infection Control Implications , 1997, Infection Control & Hospital Epidemiology.

[53]  M. Nakamura,et al.  Mechanism of chromium(VI) toxicity in Escherichia coli: is hydrogen peroxide essential in Cr(VI) toxicity? , 1995, Journal of biochemistry.

[54]  T. Dougherty,et al.  HOW DOES PHOTODYNAMIC THERAPY WORK? , 1992, Photochemistry and photobiology.

[55]  R. Mason,et al.  Light-enhanced free radical formation and trypanocidal action of gentian violet (crystal violet). , 1983, Science.

[56]  B. L. Batzing Microbiology, an Introduction , 1955, Agronomy Journal.

[57]  Boris Korzh,et al.  Time-resolved singlet-oxygen luminescence detection with an efficient and practical semiconductor single-photon detector. , 2016, Biomedical optics express.

[58]  M. Alfa,et al.  BMC Infectious Diseases BioMed Central , 2007 .