Regional models: A new approach for nonlinear system identification via clustering of the self-organizing map

Abstract Global modelling consists in fitting a single regression model to the available data, using the whole set of input and output observations. On the other side of the spectrum stands the local modelling approach, in which the input space is segmented into several small partitions and a specialized regression model is fit to each partition. In this paper, we propose a novel approach, called Regional Models (RM), that stands in between the global and local modelling ones. The proposal extends the two-level clustering approach by Vesanto and Alhoniemi (2000 [1] ) to regression problems, more specifically, to system identification. In this regard, we first partition the input space using the Self-Organizing Map (SOM), and then perform clustering over the prototypes of the trained SOM. Finally, regional regression models are built over the clusters (i.e. over the regions) of SOM prototypes, not over each SOM prototype as in local modelling. Under the proposed framework, we build regional linear and nonlinear regression models. For the linear case, we use autoregressive models with eXogenous (ARX) whose parameters are estimated using the ordinary least-squares (OLS) method. Regional nonlinear ARX (NARX) models are built using the Extreme Learning Machine network. Additionally, we develop robust variants of the proposed regional models through the use of M-estimation, a statistical framework for handling outliers, since the OLS is highly sensitive to them. Comprehensive performance evaluation of the proposed models on synthetic and real-world datasets is carried out and the results compared to those achieved by standard global and local models.

[1]  Jeongho Cho,et al.  Modeling and inverse controller design for an unmanned aerial vehicle based on the self-organizing map , 2006, IEEE Transactions on Neural Networks.

[2]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[3]  Xudong Wang,et al.  Nonlinear system identification and fault detection using hierarchical clustering analysis and local linear models , 2007, 2007 Mediterranean Conference on Control & Automation.

[4]  Bernd Fritzke Growing Grid — a self-organizing network with constant neighborhood range and adaptation strength , 1995, Neural Processing Letters.

[5]  J Von ZubenFernando,et al.  Hybridizing mixtures of experts with support vector machines , 2007 .

[6]  Gordon Lightbody,et al.  Local Model Network Identification With Gaussian Processes , 2007, IEEE Transactions on Neural Networks.

[7]  Xuan Han,et al.  Nonlinear systems identification using dynamic multi-time scales neural networks , 2008, 2008 IEEE International Conference on Automation Science and Engineering.

[8]  Lennart Ljung,et al.  Nonlinear Black Box Modeling in System Identification , 1995 .

[9]  Wen Yu,et al.  Nonlinear system identification using discrete-time recurrent neural networks with stable learning algorithms , 2004, Inf. Sci..

[10]  Alireza Fatehi,et al.  Flexible Structure Multiple Modeling Using Irregular Self-Organizing Maps Neural Network , 2008, Int. J. Neural Syst..

[11]  Esa Alhoniemi,et al.  Self-organizing map in Matlab: the SOM Toolbox , 1999 .

[12]  José de Jesús Rubio,et al.  SOFMLS: Online Self-Organizing Fuzzy Modified Least-Squares Network , 2009, IEEE Transactions on Fuzzy Systems.

[13]  Magali R. G. Meireles,et al.  A comprehensive review for industrial applicability of artificial neural networks , 2003, IEEE Trans. Ind. Electron..

[14]  János Abonyi,et al.  Fuzzy Model Identification for Control , 2003 .

[15]  Spyros G. Tzafestas,et al.  Fault diagnosis via local neural networks , 2002, Math. Comput. Simul..

[16]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[17]  K. S. Narendra,et al.  Neural networks for control theory and practice , 1996, Proc. IEEE.

[18]  Ferenc Szeifert,et al.  System Identification Using Delaunay Tessellation of Self-Organizing Maps , 2003 .

[19]  Marc M. Van Hulle Self-organizing Maps , 2012, Handbook of Natural Computing.

[20]  J. Príncipe,et al.  Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control , 1998, Proc. IEEE.

[21]  Jianbo Liu,et al.  Topology Preservation and Cooperative Learning in Identification of Multiple Model Systems , 2008, IEEE Transactions on Neural Networks.

[22]  Xiaoou Li,et al.  Dynamic system identification via recurrent multilayer perceptron , 2002, Inf. Sci..

[23]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Aluizio F. R. Araújo,et al.  Identification and control of dynamical systems using the self-organizing map , 2004, IEEE Transactions on Neural Networks.

[25]  Richard D. Braatz,et al.  On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.

[26]  O. Nelles Nonlinear System Identification , 2001 .

[27]  Jörg A. Walter,et al.  Nonlinear prediction with self-organizing maps , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[28]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  János Abonyi,et al.  Process analysis and product quality estimation by Self-Organizing Maps with an application to polyethylene production , 2003, Comput. Ind..

[30]  Thomas Martinetz,et al.  Topology representing networks , 1994, Neural Networks.

[31]  Tommy W. S. Chow,et al.  Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density , 2004, Pattern Recognit..

[32]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[33]  Mohammad Hossein Fazel Zarandi,et al.  Data-driven fuzzy modeling for Takagi-Sugeno-Kang fuzzy system , 2010, Inf. Sci..

[34]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[35]  Hussain N. Al-Duwaish,et al.  Nonlinear System Identification Using Neural Networks , 2003 .

[36]  Simon Haykin,et al.  Local Dynamic Modeling with SelfOrganizing Maps and Applications to Nonlinear System Identification and Control , 2001 .

[37]  Henrik Gollee,et al.  A constructive learning algorithm for local model networks , 1994 .

[38]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[39]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[40]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[41]  Hujun Yin,et al.  The Self-Organizing Maps: Background, Theories, Extensions and Applications , 2008, Computational Intelligence: A Compendium.

[42]  Amaury Lendasse,et al.  OP-ELM: Optimally Pruned Extreme Learning Machine , 2010, IEEE Transactions on Neural Networks.

[43]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[44]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[45]  A. N. Jha,et al.  Nonlinear System Identification using Neural Networks , 2007 .

[46]  Alberto Muñoz,et al.  Self-organizing maps for outlier detection , 1998, Neurocomputing.

[47]  Erkki Oja,et al.  Engineering applications of the self-organizing map , 1996, Proc. IEEE.

[48]  Jeongho Cho,et al.  Quasi-sliding mode control strategy based on multiple-linear models , 2007, Neurocomputing.

[49]  Vassilis G. Kaburlasos,et al.  Piecewise-linear approximation of non-linear models based on probabilistically/possibilistically interpreted intervals' numbers (INs) , 2010, Inf. Sci..

[50]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[51]  Euntai Kim,et al.  A Simple Identified Sugeno-Type Fuzzy Model via Double Clustering , 1998, Inf. Sci..

[52]  S. Lawrence,et al.  Function Approximation with Neural Networks and Local Methods: Bias, Variance and Smoothness , 1996 .

[53]  Guilherme De A. Barreto,et al.  On building local models for inverse system identification with vector quantization algorithms , 2010, Neurocomputing.

[54]  J. Sjöberg Neural networks for modelling and control of dynamic systems: M. Nørgaard, O. Ravn, N. K. Poulsen and L. K. Hansen. Springer-Verlag, London Berlin Heidelberg, 2000, pp. xiv+246 , 2004 .

[55]  Stephen A. Billings,et al.  Non-linear system identification using neural networks , 1990 .

[56]  Stefan Jakubek,et al.  Local model network identification for online engine modelling , 2013, Inf. Sci..

[57]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[58]  Kazushi Nakano,et al.  Nonlinear Predictive Control Using Neural Nets-Based Local Linearization ARX Model—Stability and Industrial Application , 2007, IEEE Transactions on Control Systems Technology.

[59]  Robert Shorten,et al.  On the interpretation of local models in blended multiple model structures. , 1999 .

[60]  Erik Berglund,et al.  The parameterless self-organizing map algorithm , 2006, IEEE Transactions on Neural Networks.

[61]  Punyaphol Horata,et al.  Robust extreme learning machine , 2013, Neurocomputing.

[62]  Robert Babuska,et al.  Neuro-fuzzy methods for nonlinear system identification , 2003, Annu. Rev. Control..

[63]  U. Ligges Review of An R and S-PLUS companion to applied regression by J. Fox, Sage Publications, Thousand Oaks, California 2002 , 2003 .

[64]  Madasu Hanmandlu,et al.  Generalization of adaptive neuro-fuzzy inference systems , 2000, IEEE Trans. Neural Networks Learn. Syst..

[65]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[66]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[67]  Teuvo Kohonen,et al.  Essentials of the self-organizing map , 2013, Neural Networks.

[68]  Gordon Lightbody,et al.  Nonlinear system identification: From multiple-model networks to Gaussian processes , 2008, Eng. Appl. Artif. Intell..

[69]  Fernando José Von Zuben,et al.  Hybridizing mixtures of experts with support vector machines: Investigation into nonlinear dynamic systems identification , 2007, Inf. Sci..

[70]  Yu-Geng Xi,et al.  Nonlinear system modeling by competitive learning and adaptive fuzzy inference system , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[71]  Claudio Moraga,et al.  A robust and flexible model of hierarchical self-organizing maps for non-stationary environments , 2007, Neurocomputing.

[72]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[73]  Esa Alhoniemi,et al.  Clustering of the self-organizing map , 2000, IEEE Trans. Neural Networks Learn. Syst..

[74]  Y. K. Wong,et al.  Nonlinear system identification using optimized dynamic neural network , 2009, Neurocomputing.

[75]  Weidong Luo,et al.  Nonlinear systems identification using dynamic multi-time scale neural networks , 2011, Neurocomputing.

[76]  Francesco Corona,et al.  Robust Regional Modeling for Nonlinear System Identification Using Self-Organizing Maps , 2012, WSOM.

[77]  Qinyu. Zhu Extreme Learning Machine , 2013 .