Advanced topics for further programming development

[1]  J. Jirousek,et al.  Solution of orthotropic plates based on p-extension of the hybrid-Trefftz finite element model , 1990 .

[2]  Lazarus Tenek,et al.  Computational aspects of the natural-mode finite element method , 1997 .

[3]  J. Jirousek,et al.  Mesh design and reliability assurance in hybrid-Trefftz p-element approach , 1996 .

[4]  Bruce M. Irons,et al.  A frontal solution program for finite element analysis , 1970 .

[5]  Qing Hua Qin,et al.  A meshless model for transient heat conduction in functionally graded materials , 2006 .

[6]  Qing Hua Qin,et al.  A family of quadrilateral hybrid-Trefftz p-elements for thick plate analysis , 1995 .

[7]  Qing Hua Qin,et al.  The Trefftz Finite and Boundary Element Method , 2000 .

[8]  David R. Owen,et al.  FINITE ELEMENT PROGRAMMING , 1980, The Finite Element Method Using MATLAB.

[9]  John Argyris,et al.  Large natural strains and some special difficulties due to non-linearity and incompressibility in finite elements , 1974 .

[10]  J. Jirousek,et al.  Large finite elements method for the solution of problems in the theory of elasticity , 1982 .

[11]  J. Jirousek,et al.  T-elements: State of the art and future trends , 1996 .

[12]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[13]  J. Jirousek,et al.  Hybrid‐Trefftz plate bending elements with p‐method capabilities , 1987 .

[14]  D. L. Young,et al.  Short Note: The method of fundamental solutions for 2D and 3D Stokes problems , 2006 .

[15]  A. Venkatesh,et al.  Hybrid trefftz plane elasticity elements with p ‐method capabilities , 1992 .

[16]  Q. Qin,et al.  A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media , 2005 .

[17]  D. L. Young,et al.  Method of fundamental solutions for multidimensional Stokes equations by the dual-potential formulation , 2006 .