MOVING MESH FINITE ELEMENT APPROXIMATIONS FOR VARIATIONAL INEQUALITY I: STATIC OBSTACLE PROBLEM

Finite element schemes loose accuracy when approximating a class of vari-ational inequalities, elliptic obstacle problems, due to the existence of free boundaries. In this paper, moving mesh nite element method is applied to solve the elliptic obstacle problems. Computational meshes are constructed by combining harmonic mapping and sharper a posteriori error estimators which are normally used in h-version adaptive nite element approximation. Some important issues such as the selection of monitor functions and monitor smoothing are addressed. The numerical schemes are applied to a number of test problems in two dimensions. It is shown that the moving mesh nite element methods with appropriate monitor functions eliminate (to leading order) the errors arising from the free boundaries.

[1]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[2]  A. Friedman Variational principles and free-boundary problems , 1982 .

[3]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[4]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[5]  M. Baines Moving finite elements , 1994 .

[6]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[7]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[8]  Ricardo G. Durán,et al.  On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .

[9]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[10]  Bin-Xin He Solving a class of linear projection equations , 1994 .

[11]  J. Brackbill An adaptive grid with directional control , 1993 .

[12]  Spectral methods for singular perturbation problems , 1994 .

[13]  C. M. Elliott,et al.  Weak and variational methods for moving boundary problems , 1982 .

[14]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[15]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[16]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[17]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[18]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[19]  Rossiĭskai︠a︡ akademii︠a︡ nauk Computational mathematics and mathematical physics , 1992 .

[20]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[21]  Pingwen Zhang,et al.  Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .

[22]  J. Flaherty,et al.  An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .

[23]  Randolph E. Bank,et al.  Symmetric Error Estimates for Moving Mesh Mixed Methods for Advection-Diffusion Equations , 2002, SIAM J. Numer. Anal..

[24]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[25]  Joseph E. Flaherty,et al.  Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .

[26]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[27]  M WinslowAlan Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[28]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[29]  Richard S. Hamilton,et al.  Harmonic Maps of Manifolds with Boundary , 1975 .

[30]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[31]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[32]  Ricardo H. Nochetto,et al.  Pointwise a Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem , 2001 .

[33]  Weiqing Ren,et al.  An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .

[34]  R. Bank,et al.  Analysis of some moving space-time finite element methods , 1993 .

[35]  Wenbin Liu,et al.  A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..

[36]  Robert D. Russell,et al.  A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..

[37]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[38]  Rüdiger Verfürth A Posteriori Error Estimates for Non-Linear Problems , 1994 .