MOVING MESH FINITE ELEMENT APPROXIMATIONS FOR VARIATIONAL INEQUALITY I: STATIC OBSTACLE PROBLEM
暂无分享,去创建一个
[1] J. Lions,et al. Inequalities in mechanics and physics , 1976 .
[2] A. Friedman. Variational principles and free-boundary problems , 1982 .
[3] C. D. Boor,et al. Good approximation by splines with variable knots. II , 1974 .
[4] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[5] M. Baines. Moving finite elements , 1994 .
[6] Tao Tang,et al. Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..
[7] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[8] Ricardo G. Durán,et al. On the asymptotic exactness of error estimators for linear triangular finite elements , 1991 .
[9] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[10] Bin-Xin He. Solving a class of linear projection equations , 1994 .
[11] J. Brackbill. An adaptive grid with directional control , 1993 .
[12] Spectral methods for singular perturbation problems , 1994 .
[13] C. M. Elliott,et al. Weak and variational methods for moving boundary problems , 1982 .
[14] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[15] J. Brackbill,et al. Adaptive zoning for singular problems in two dimensions , 1982 .
[16] Robert D. Russell,et al. Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .
[17] A. Dvinsky. Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .
[18] Ralf Kornhuber,et al. A posteriori error estimates for elliptic variational inequalities , 1996 .
[19] Rossiĭskai︠a︡ akademii︠a︡ nauk. Computational mathematics and mathematical physics , 1992 .
[20] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[21] Pingwen Zhang,et al. Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .
[22] J. Flaherty,et al. An Adaptive Finite Element Method for Initial-Boundary Value Problems for Partial Differential Equations , 1982 .
[23] Randolph E. Bank,et al. Symmetric Error Estimates for Moving Mesh Mixed Methods for Advection-Diffusion Equations , 2002, SIAM J. Numer. Anal..
[24] R. Glowinski,et al. Numerical Analysis of Variational Inequalities , 1981 .
[25] Joseph E. Flaherty,et al. Adaptive local overlapping grid methods for parabolic systems in two space dimensions , 1992 .
[26] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .
[27] M WinslowAlan. Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .
[28] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[29] Richard S. Hamilton,et al. Harmonic Maps of Manifolds with Boundary , 1975 .
[30] J. Oden,et al. A unified approach to a posteriori error estimation using element residual methods , 1993 .
[31] J. Tinsley Oden,et al. Local a posteriori error estimators for variational inequalities , 1993 .
[32] Ricardo H. Nochetto,et al. Pointwise a Posteriori Error Analysis for an Adaptive Penalty Finite Element Method for the Obstacle Problem , 2001 .
[33] Weiqing Ren,et al. An Iterative Grid Redistribution Method for Singular Problems in Multiple Dimensions , 2000 .
[34] R. Bank,et al. Analysis of some moving space-time finite element methods , 1993 .
[35] Wenbin Liu,et al. A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..
[36] Robert D. Russell,et al. A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..
[37] Joe F. Thompson,et al. Numerical grid generation , 1985 .
[38] Rüdiger Verfürth. A Posteriori Error Estimates for Non-Linear Problems , 1994 .