Large guanidinium cation mixed with methylammonium in lead iodide perovskites for 19% efficient solar cells

[1]  Mohammad Khaja Nazeeruddin,et al.  Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. , 2015, Nature chemistry.

[2]  S. Emura,et al.  EXAFS Study on the Phase Transition (Phase α’-δ) in CH3NH3I , 1995 .

[3]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[4]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[5]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[6]  H. M. Jang,et al.  The nature of hydrogen-bonding interaction in the prototypic hybrid halide perovskite, tetragonal CH3NH3PbI3 , 2016, Scientific Reports.

[7]  Hongwei Gao,et al.  Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3 , 2011 .

[8]  P. Kamat,et al.  Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. , 2016, The journal of physical chemistry letters.

[9]  R. Luque,et al.  Benign-by-Design Solventless Mechanochemical Synthesis of Three-, Two-, and One-Dimensional Hybrid Perovskites. , 2016, Angewandte Chemie.

[10]  H. Snaith,et al.  The Raman Spectrum of the CH3NH3PbI3 Hybrid Perovskite: Interplay of Theory and Experiment. , 2014, The journal of physical chemistry letters.

[11]  Shahzad Ahmad,et al.  Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques , 2014 .

[12]  E. Hoke,et al.  CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc02542g Click here for additional data file. , 2015, Chemical science.

[13]  J. Wahren,et al.  New Tricks by an Old Dog , 2008, Experimental diabetes research.

[14]  X. You,et al.  Sequential Introduction of Cations Deriving Large-Grain Csx FA1-x PbI3 Thin Film for Planar Hybrid Solar Cells: Insight into Phase-Segregation and Thermal-Healing Behavior. , 2017, Small.

[15]  Sabre Kais,et al.  Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 , 2014, Nature Communications.

[16]  M. Szafrański,et al.  Phase transitions in the layered structure of diguanidinium tetraiodoplumbate , 2000 .

[17]  E. Sargent,et al.  Halide-Dependent Electronic Structure of Organolead Perovskite Materials , 2015 .

[18]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  M. Szafrański Investigation of phase instabilities in guanidinium halogenoplumbates(II) , 1997 .

[21]  Mohammad Khaja Nazeeruddin,et al.  Intrinsic Halide Segregation at Nanometer Scale Determines the High Efficiency of Mixed Cation/Mixed Halide Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[22]  Abdullah M. Asiri,et al.  Optimization of Stable Quasi-Cubic FAxMA1–xPbI3 Perovskite Structure for Solar Cells with Efficiency beyond 20% , 2017 .

[23]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[24]  K. P. Ong,et al.  Structural Evolution in Methylammonium Lead Iodide CH3NH3PbI3. , 2015, The journal of physical chemistry. A.

[25]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[26]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[27]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[28]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[29]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[30]  Radha Shivaramaiah,et al.  Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites , 2016, Proceedings of the National Academy of Sciences.

[31]  E. Hoke,et al.  CH3NH3PbI3 perovskite single crystals: surface photophysics and their interaction with the environment , 2015, Chemical science.

[32]  Yang Yang,et al.  Guanidinium: A Route to Enhanced Carrier Lifetime and Open-Circuit Voltage in Hybrid Perovskite Solar Cells. , 2016, Nano letters.

[33]  N. Preda,et al.  Raman and photoluminescence studies on intercalated lead iodide with pyridine and iodine , 2008 .

[34]  Aram Amassian,et al.  Ligand-Stabilized Reduced-Dimensionality Perovskites. , 2016, Journal of the American Chemical Society.

[35]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[36]  Anders Hagfeldt,et al.  Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. , 2016, ACS nano.

[37]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[38]  W. David,et al.  Neutron diffraction and calorimetric studies of methylammonium iodide , 1992 .

[39]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[40]  N. Koch,et al.  Impact of White Light Illumination on the Electronic and Chemical Structures of Mixed Halide and Single Crystal Perovskites , 2017 .

[41]  J. Bisquert,et al.  Theory of Impedance and Capacitance Spectroscopy of Solar Cells with Dielectric Relaxation, Drift-Diffusion Transport, and Recombination , 2014 .

[42]  Peng Gao,et al.  Efficient luminescent solar cells based on tailored mixed-cation perovskites , 2016, Science Advances.

[43]  M. Grätzel,et al.  Globularity‐Selected Large Molecules for a New Generation of Multication Perovskites , 2017, Advanced materials.

[44]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[45]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[46]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[47]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[48]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[49]  M. Szafrański,et al.  Origin of spontaneous polarization and reconstructive phase transition in guanidinium iodide , 2013 .

[50]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[51]  L. Manna,et al.  The Impact of the Crystallization Processes on the Structural and Optical Properties of Hybrid Perovskite Films for Photovoltaics. , 2014, The journal of physical chemistry letters.