Multi-Resolution Sensitivity Analysis of Model of Immune Response to Helicobacter pylori Infection via Spatio-Temporal Metamodeling

Computational immunology studies the interactions between the components of the immune system that includes the interplay between regulatory and inflammatory elements. It provides a solid framework that aids the conversion of pre-clinical and clinical data into mathematical equations to enable modeling and in silico experimentation. The modeling-driven insights shed lights on some of the most pressing immunological questions and aid the design of fruitful validation experiments. A typical system of equations, mapping the interaction among various immunological entities and a pathogen, consists of a high-dimensional input parameter space that could drive the stochastic system outputs in unpredictable directions. In this paper, we perform spatio-temporal metamodel-based sensitivity analysis of immune response to Helicobacter pylori infection using the computational model developed by the ENteric Immune SImulator. We propose a two-stage procedure to obtain the estimates of the Sobol’ total and first-order indices for each input parameter, for quantifying their time-varying impacts on each output of interest. In particular, we fully reuse and exploit information from an existing simulated dataset, develop a novel sampling design for constructing the two-stage metamodels, and perform metamodel-based sensitivity analysis. The proposed procedure is scalable, easily interpretable, and adaptable to any multi-input multi-output complex systems of equations with a high-dimensional input parameter space.

[1]  Sidonie Lefebvre,et al.  A methodological approach for statistical evaluation of aircraft infrared signature , 2010, Reliab. Eng. Syst. Saf..

[2]  Raquel Hontecillas,et al.  Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis , 2016, Gut microbes.

[3]  Xi Chen,et al.  The effects of common random numbers on stochastic kriging metamodels , 2012, TOMC.

[4]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[5]  Runze Li,et al.  Design and Modeling for Computer Experiments , 2005 .

[6]  Yongguo Mei,et al.  ENISI SDE: A New Web-Based Tool for Modeling Stochastic Processes , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[7]  Bertrand Iooss,et al.  Screening and metamodeling of computer experiments with functional outputs. Application to thermal-hydraulic computations , 2012, Reliab. Eng. Syst. Saf..

[8]  Seong-Hee Kim,et al.  Guest Editors' Introduction to Special Issue on the 2012 NSF workshop , 2014, TOMC.

[9]  Sebastian Reuter,et al.  Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. , 2011, The Journal of clinical investigation.

[10]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[11]  Bertrand Iooss,et al.  Global sensitivity analysis for models with spatially dependent outputs , 2009, 0911.1189.

[12]  C. Anania,et al.  Consequences of Helicobacter pylori infection in children. , 2010, World journal of gastroenterology.

[13]  Xi Chen,et al.  Stochastic kriging with biased sample estimates , 2014, ACM Trans. Model. Comput. Simul..

[14]  Raquel Hontecillas,et al.  ENISI multiscale modeling of mucosal immune responses driven by high performance computing , 2015, 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[15]  Fabrice Gamboa,et al.  Efficient estimation of sensitivity indices , 2012, 1203.2899.

[16]  Brian J. Williams,et al.  Sensitivity analysis when model outputs are functions , 2006, Reliab. Eng. Syst. Saf..

[17]  J. Bassaganya-Riera,et al.  Multiscale modeling of mucosal immune responses , 2015, BMC Bioinformatics.

[18]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[19]  B. Sobral,et al.  Helicobacter pylori Colonization Ameliorates Glucose Homeostasis in Mice through a PPAR γ-Dependent Mechanism , 2012, PloS one.

[20]  Max D. Morris,et al.  Using Orthogonal Arrays in the Sensitivity Analysis of Computer Models , 2008, Technometrics.

[21]  M. Jansen Analysis of variance designs for model output , 1999 .

[22]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[23]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[24]  Fabrice Gamboa,et al.  Sensitivity analysis for multidimensional and functional outputs , 2013, 1311.1797.

[25]  B. Iooss,et al.  Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site , 2008 .

[26]  Sebastian Reuter,et al.  Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10 , 2014, Proceedings of the National Academy of Sciences.

[27]  Xiong Lin,et al.  Simulating Lévy Processes from Their Characteristic Functions and Financial Applications , 2011, TOMC.

[28]  Hadi Dowlatabadi,et al.  Sensitivity and Uncertainty Analysis of Complex Models of Disease Transmission: an HIV Model, as an Example , 1994 .

[29]  Barry L. Nelson,et al.  Stochastic kriging for simulation metamodeling , 2008, 2008 Winter Simulation Conference.

[30]  Cris S. Constantinescu,et al.  Helicobacter pylori infection reduces disease severity in an experimental model of multiple sclerosis , 2015, Journal of the Neurological Sciences.

[31]  Cynthia M. Sharma,et al.  Transcriptome Complexity and Riboregulation in the Human Pathogen Helicobacter pylori , 2012, Front. Cell. Inf. Microbio..

[32]  Bertrand Iooss,et al.  Response surfaces and sensitivity analyses for an environmental model of dose calculations , 2006, Reliab. Eng. Syst. Saf..

[33]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[34]  David Makowski,et al.  Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models , 2011, Reliab. Eng. Syst. Saf..

[35]  B. Iooss,et al.  A Review on Global Sensitivity Analysis Methods , 2014, 1404.2405.

[36]  Reza Yaesoubi,et al.  Important factors in screening for Colorectal Cancer , 2007, 2007 Winter Simulation Conference.

[37]  Barry L. Nelson,et al.  Controlled Sequential Bifurcation: A New Factor-Screening Method for Discrete-Event Simulation , 2006, Oper. Res..

[38]  Kian Hsiang Low,et al.  Gaussian Process Decentralized Data Fusion and Active Sensing for Spatiotemporal Traffic Modeling and Prediction in Mobility-on-Demand Systems , 2015, IEEE Transactions on Automation Science and Engineering.

[39]  Raquel Hontecillas,et al.  Development of Synthetic Patient Populations and In Silico Clinical Trials , 2018 .

[40]  Madhav V. Marathe,et al.  ENteric Immunity SImulator: A Tool for in silico Study of Gut Immunopathologies , 2011, 2011 IEEE International Conference on Bioinformatics and Biomedicine.

[41]  D. Nychka,et al.  A Multiresolution Gaussian Process Model for the Analysis of Large Spatial Datasets , 2015 .

[42]  M. Stolte,et al.  Helicobacter pylori gastritis and gastric MALT-lymphoma , 1992, The Lancet.

[43]  Sudipto Banerjee,et al.  Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets , 2014, Journal of the American Statistical Association.

[44]  J. Bassaganya-Riera,et al.  Cooperation of Gastric Mononuclear Phagocytes with Helicobacter pylori during Colonization , 2017, The Journal of Immunology.

[45]  Warren B. Powell,et al.  The Effect of Robust Decisions on the Cost of Uncertainty in Military Airlift Operations , 2011, TOMC.

[46]  D. Kirschner,et al.  A methodology for performing global uncertainty and sensitivity analysis in systems biology. , 2008, Journal of theoretical biology.

[47]  Stefano Tarantola,et al.  A General Probabilistic Framework for uncertainty and global sensitivity analysis of deterministic models: A hydrological case study , 2014, Environ. Model. Softw..

[48]  Peter Malfertheiner,et al.  Helicobacter pylori but not gastrin is associated with the development of colonic neoplasms , 2014, International journal of cancer.

[49]  E. El-Omar,et al.  Host-bacterial interactions in Helicobacter pylori infection. , 2008, Gastroenterology.

[50]  C. O'Morain,et al.  Helicobacter pylori Infection , 1994 .

[51]  Yongguo Mei,et al.  ENISI MSM: A novel multi-scale modeling platform for computational immunology , 2014, 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[52]  Jim W. Hall,et al.  Sensitivity analysis of environmental models: A systematic review with practical workflow , 2014, Environ. Model. Softw..

[53]  Frédéric Hollande,et al.  Gastric Sonic Hedgehog acts as a macrophage chemoattractant during the immune response to Helicobacter pylori. , 2012, Gastroenterology.

[54]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[55]  David Makowski,et al.  Global sensitivity analysis for calculating the contribution of genetic parameters to the variance of crop model prediction , 2006, Reliab. Eng. Syst. Saf..

[56]  Emanuele Borgonovo,et al.  Sensitivity analysis: A review of recent advances , 2016, Eur. J. Oper. Res..

[57]  Lars Grunske,et al.  Reliability-driven deployment optimization for embedded systems , 2011, J. Syst. Softw..

[58]  A. Gupta,et al.  A Bayesian Approach to , 1997 .

[59]  M. Marathe,et al.  Sensitivity Analysis of an ENteric Immunity SImulator (ENISI)-Based Model of Immune Responses to Helicobacter pylori Infection , 2015, PloS one.

[60]  K.,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[61]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[62]  A. Marrel,et al.  Development of a surrogate model and sensitivity analysis for spatio-temporal numerical simulators , 2015, Stochastic Environmental Research and Risk Assessment.

[63]  T. Leviatan,et al.  A tale of two algorithms , 2006 .

[64]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[65]  Thomas W. Lucas,et al.  Designs for Large‐Scale Simulation Experiments, with Applications to Defense and Homeland Security , 2012 .

[66]  M. Marathe,et al.  ENteric Immunity SImulator: A Tool for In Silico Study of Gastroenteric Infections , 2012, IEEE Transactions on NanoBioscience.

[67]  Paola Inverardi,et al.  Proceedings of the joint ACM SIGSOFT conference -- QoSA and ACM SIGSOFT symposium -- ISARCS on Quality of software architectures -- QoSA and architecting critical systems -- ISARCS , 2011, CBSE 2011.

[68]  Olivier Roustant,et al.  Calculations of Sobol indices for the Gaussian process metamodel , 2008, Reliab. Eng. Syst. Saf..

[69]  Robert E. Shannon,et al.  Design and analysis of simulation experiments , 1978, WSC '78.

[70]  A. Saltelli,et al.  Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques , 1990 .

[71]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.