Remarks on Villadsen algebras

[1]  Mihai Alboiu,et al.  The Stable Rank of Diagonal ASH Algebras and Crossed Products by Minimal Homeomorphisms , 2020, 2005.00148.

[2]  Huaxin Lin,et al.  A classification of finite simple amenable Z-stable C*-algebras, II, --C*-algebras with rational generalized tracial rank one , 2019, 1909.13382.

[3]  A. Tikuisis,et al.  Nuclear dimension of simple $$\mathrm {C}^*$$-algebras , 2019, Inventiones mathematicae.

[4]  Huaxin Lin,et al.  A classification of finite simple amenable ${\cal Z}$-stable $C^*$-algebras, I: $C^*$-algebras with generalized tracial rank one. , 2018, 1812.11590.

[5]  G. Elliott,et al.  The classification of simple separable unital Z-stable locally ASH algebras , 2017 .

[6]  A. Tikuisis,et al.  Quasidiagonality of nuclear C*-algebras , 2015, 1509.08318.

[7]  G. Elliott,et al.  On the classification of simple amenable C*-algebras with finite decomposition rank , 2015, 1507.07876.

[8]  A. Tikuisis,et al.  Decomposition rank of approximately subhomogeneous C*-algebras , 2015, Forum Mathematicum.

[9]  U. Haagerup Quasitraces on exact C*-algebras are traces , 2014, 1403.7653.

[10]  Z. Niu Mean dimension and AH-algebras with diagonal maps , 2010, 1010.0623.

[11]  W. Winter,et al.  Quasitraces are Traces: A Short Proof of the Finite-Nuclear-Dimension Case , 2010, 1005.2229.

[12]  Andrew S. Toms,et al.  A class of simple C ∗ -algebras with stable rank one ✩ , 2007, math/0703393.

[13]  Andrew S. Toms FLAT DIMENSION GROWTH FOR C ∗ -ALGEBRAS , 2005, math/0510409.

[14]  Andrew S. Toms On the classification problem for nuclear C^*-algebras , 2005, math/0509103.

[15]  Huaxin Lin,et al.  ALMOST MULTIPLICATIVE MORPHISMS AND K-THEORY , 2000 .

[16]  Marius Dadarlat,et al.  On The Classification of Nuclear C*‐Algebras , 1998, math/9809089.

[17]  J. Villadsen,et al.  Simple C*-Algebras with Perforation , 1998 .

[18]  K. Goodearl Notes on a class of simple $C^*$-algebras with real rank zero , 1992 .

[19]  Claude L. Schochet,et al.  The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized $K$-functor , 1987 .

[20]  Karl Sigmund,et al.  Generic properties of invariant measures for AxiomA-diffeomorphisms , 1970 .

[21]  J. Dixmier,et al.  On some C∗-algebras considered by Glimm , 1967 .

[22]  K. R. Parthasarathy,et al.  On the category of ergodic measures , 1961 .

[23]  James Glimm,et al.  On a certain class of operator algebras , 1960 .

[24]  David Kerr,et al.  Subshifts and perforation , 2010 .

[25]  HO TOANM. A Class of Simple C * -algebras with Stable Rank One , 2007 .

[26]  Huaxin Lin STABLE APPROXIMATE UNITARY EQUIVALENCE OF HOMOMORPHISMS , 2002 .

[27]  George A. Elliott,et al.  On the classification of C*-algebras of real rank zero. , 1993 .

[28]  J. Lindenstrauss,et al.  The Poulsen simplex , 1978 .

[29]  Karl Sigmund,et al.  On the Space of Invariant Measures for Hyperbolic Flows , 1972 .

[30]  E. Poulsen A simplex with dense extreme points , 1961 .

[31]  P. Hall On Representatives of Subsets , 1935 .