Dust deposition on the decks of the Mars Exploration Rovers: 10 years of dust dynamics on the Panoramic Camera calibration targets

The Panoramic Cameras on NASA's Mars Exploration Rovers have each returned more than 17,000 images of their calibration targets. In order to make optimal use of this data set for reflectance calibration, a correction must be made for the presence of air fall dust. Here we present an improved dust correction procedure based on a two‐layer scattering model, and we present a dust reflectance spectrum derived from long‐term trends in the data set. The dust on the calibration targets appears brighter than dusty areas of the Martian surface. We derive detailed histories of dust deposition and removal revealing two distinct environments: At the Spirit landing site, half the year is dominated by dust deposition, the other half by dust removal, usually in brief, sharp events. At the Opportunity landing site the Martian year has a semiannual dust cycle with dust removal happening gradually throughout two removal seasons each year. The highest observed optical depth of settled dust on the calibration target is 1.5 on Spirit and 1.1 on Opportunity (at 601 nm). We derive a general prediction for dust deposition rates of 0.004 ± 0.001 in units of surface optical depth deposited per sol (Martian solar day) per unit atmospheric optical depth. We expect this procedure to lead to improved reflectance‐calibration of the Panoramic Camera data set. In addition, it is easily adapted to similar data sets from other missions in order to deliver improved reflectance calibration as well as data on dust reflectance properties and deposition and removal history.

[1]  Michael H. Wong,et al.  Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover , 2015 .

[2]  E. A. Guinness,et al.  Ancient Aqueous Environments at Endeavour Crater, Mars , 2014, Science.

[3]  D. Waugh,et al.  High‐altitude dust layers on Mars: Observations with the Thermal Emission Spectrometer , 2013 .

[4]  S. Murchie,et al.  Vertical distribution of dust and water ice aerosols from CRISM limb‐geometry observations , 2013 .

[5]  J. Bell,et al.  Dust deposition and removal at the MER landing sites from observations of the Panoramic Camera (Pancam) calibration targets , 2012 .

[6]  J. Schofield,et al.  The vertical distribution of dust in the Martian atmosphere during northern spring and summer: Observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles , 2011 .

[7]  Geoffrey A. Landis,et al.  Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates , 2010 .

[8]  Elisa A. Hemmig,et al.  Microscopy analysis of soils at the Phoenix landing site, Mars: Classification of soil particles and description of their optical and magnetic properties , 2010 .

[9]  G. Landis,et al.  Gusev Crater, Mars: Observations of three dust devil seasons , 2010 .

[10]  Bruce A. Cantor,et al.  Ultraviolet dust aerosol properties as observed by MARCI , 2010 .

[11]  M. D. Ellehoj,et al.  Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site , 2010 .

[12]  Jeffrey R. Johnson,et al.  Overview of the magnetic properties experiments on the Mars Exploration Rovers , 2009 .

[13]  Craig B. Markwardt,et al.  Non-linear Least Squares Fitting in IDL with MPFIT , 2009, 0902.2850.

[14]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[15]  William H. Farrand,et al.  Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate , 2008 .

[16]  K. Kinch,et al.  The Martian Surface: Magnetic properties of Martian surface materials , 2008 .

[17]  Jeffrey R. Johnson,et al.  Wind-driven particle mobility on Mars: Insights from Mars Exploration Rover observations at "El Dorado" and surroundings at Gusev Crater , 2008 .

[18]  R. Arvidson Introduction to special section on Results from the Mars Exploration Rover Spirit and Opportunity Missions , 2008 .

[19]  R. Morris,et al.  The Martian Surface: Iron mineralogy and aqueous alteration on Mars from the MER Mössbauer spectrometers , 2008 .

[20]  Per Nornberg,et al.  Determination of the wind induced detachment threshold for granular material on Mars using wind tunnel simulations , 2007 .

[21]  J. Bell,et al.  High spectral resolution UV to near-IR observations of Mars using HST/STIS , 2007 .

[22]  Jeffrey R. Johnson,et al.  Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets , 2007 .

[23]  M. Shepard,et al.  A test of the Hapke photometric model , 2007 .

[24]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity , 2006 .

[25]  Dmitry Savransky,et al.  Chromaticity of the Martian sky as observed by the Mars Exploration Rover Pancam instruments , 2006 .

[26]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[27]  Raymond E. Arvidson,et al.  Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry , 2006 .

[28]  Mark T. Lemmon,et al.  Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini‐TES , 2006 .

[29]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[30]  William H. Farrand,et al.  Overview of the Opportunity Mars Exploration Rover mission to Meridiani Planum: Eagle crater to Purgatory ripple , 2006 .

[31]  S. Cummer,et al.  A model of the ULF magnetic and electric field generated from a dust devil , 2006 .

[32]  K. Herkenhoff,et al.  Dust and Sand Deposition on the MER Solar Arrays as Viewed by the Microscopic Imager , 2006 .

[33]  William H. Farrand,et al.  Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit: PANCAM PHOTOMETRY-SPIRIT , 2006 .

[34]  Jeffrey R. Johnson,et al.  Spectral variability among rocks in visible and near‐infrared multispectral Pancam data collected at Gusev crater: Examinations using spectral mixture analysis and related techniques , 2006 .

[35]  William H. Farrand,et al.  Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing site to Backstay Rock in the Columbia Hills , 2006 .

[36]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[37]  Miles J. Johnson,et al.  In‐flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments , 2006 .

[38]  K. Kinch,et al.  Preliminary analysis of the MER magnetic properties experiment using a computational fluid dynamics model , 2006 .

[39]  Simulations of the magnetic properties experiment on Mars Exploration Rovers , 2006 .

[40]  S. Squyres,et al.  Backscattering Mössbauer spectroscopy of Martian dust , 2006 .

[41]  B. Hapke,et al.  Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols , 2005 .

[42]  D. Ming,et al.  Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust , 2005, Nature.

[43]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[44]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum , 2004, Science.

[45]  Jimmy D Bell,et al.  Atmospheric Imaging Results from the Mars Exploration Rovers: Spirit and Opportunity , 2004, Science.

[46]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[47]  J. Bell,et al.  Martian phase function: Modeling the visible to near-infrared surface photometric function using HST-WFPC2 data , 2004 .

[48]  William M. Grundy,et al.  Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks , 2004 .

[49]  D. Ming,et al.  Pancam Multispectral Imaging Results from the Spirit Rover at Gusev Crater , 2004, Science.

[50]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[51]  Jonathan Merrison,et al.  The electrical properties of Mars analogue dust , 2004 .

[52]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[53]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[54]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .

[55]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[56]  Mark T. Lemmon,et al.  Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra , 2003 .

[57]  K. Edgett Low-albedo surfaces and eolian sediment: Mars Orbiter Camera views of western Arabia Terra craters and wind streaks , 2002 .

[58]  N. Thomas,et al.  Optical properties of the Martian aerosols in the visible spectral range , 2002 .

[59]  E. Chassefie Vertical Structure and Size Distributions of Martian Aerosols from Solar Occultation Measurements , 2002 .

[60]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[61]  Richard V. Morris,et al.  Phyllosilicate-poor palagonitic dust from Mauna Kea Volcano (Hawaii): A mineralogical analogue for magnetic Martian dust? , 2001 .

[62]  M. J. Wolff,et al.  An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .

[63]  Kenneth S. Edgett,et al.  Martian Dust Raising and Surface Albedo Controls: Thin, Dark (and Sometimes Bright) Streaks and Dust Devils in MGS MOC High Resolution Images , 2000 .

[64]  Phillip P. Jenkins,et al.  Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder , 2000 .

[65]  Richard V. Morris,et al.  Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples , 2000 .

[66]  R. J. Reid,et al.  Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder , 2000 .

[67]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[68]  Nicolas Thomas,et al.  The color of the Martian sky and its influence on the illumination of the Martian surface , 1999 .

[69]  Nicolas Thomas,et al.  Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data , 1999 .

[70]  R. J. Reid,et al.  Imager for Mars Pathfinder (IMP) image calibration , 1999 .

[71]  J. Bell,et al.  Near-Infrared Imaging of Mars from HST: Surface Reflectance, Photometric Properties, and Implications for MOLA Data , 1999 .

[72]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[73]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[74]  J. Bell,et al.  1995 observations of Martian dust storms using the Hubble Space Telescope , 1996 .

[75]  L. Colina,et al.  The 0.12-2.5 micron Absolute Flux Distribution of the Sun for Comparison With Solar Analog Stars , 1996 .

[76]  Geoffrey A. Landis,et al.  Dust obscuration of Mars solar arrays , 1996 .

[77]  G. R. Gladstone,et al.  A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos , 1995 .

[78]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[79]  P. Drossart,et al.  Post‐Phobos model for the altitude and size distribution of dust in the low Martian atmosphere , 1995 .

[80]  J. Bell,et al.  New composite reflectance spectra of Mars from 0.4 to 3.14 μm , 1994 .

[81]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[82]  V. Moroz,et al.  Spectrophotometry of Mars in the KRFM experiment of the Phobos mission : some properties of the particles of atmospheric aerosols and the surface , 1993 .

[83]  J. Pollack,et al.  Martian global dust storms: Zonally symmetric numerical simulations including size‐dependent particle transport , 1993 .

[84]  J. Blamont,et al.  Vertical structure and size distributions of Martian aerosols from solar occultation measurements , 1992 .

[85]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[86]  R. Arvidson,et al.  Nature and distribution of surficial deposits in Chryse Planitia and vicinity, Mars , 1988 .

[87]  Raymond E. Arvidson,et al.  On The spectral reflectance properties of materials exposed at the Viking landing sites , 1987 .

[88]  J. Veverka,et al.  Wind streaks in Tharsis and Elysium: Implications for sediment transport by slope winds , 1982 .

[89]  R. Greeley Silt-clay aggregates on Mars , 1979 .

[90]  J. Pollack,et al.  Properties and effects of dust particles suspended in the Martian atmosphere , 1979 .

[91]  Carl Sagan,et al.  Physical properties of the particles composing the Martian dust storm of 1971–1972 , 1977 .

[92]  C. Sagan,et al.  Secular changes and dark-area regeneration on Mars , 1967 .

[93]  J. Wishart Probable Error , 1932, The Mathematical Gazette.

[94]  R. Fisher 035: The Distribution of the Partial Correlation Coefficient. , 1924 .

[95]  R. Fisher 014: On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample. , 1921 .

[96]  R. Fisher FREQUENCY DISTRIBUTION OF THE VALUES OF THE CORRELATION COEFFIENTS IN SAMPLES FROM AN INDEFINITELY LARGE POPU;ATION , 1915 .