Rank Aggregation via Heterogeneous Thurstone Preference Models
暂无分享,去创建一个
Tao Jin | Quanquan Gu | Pan Xu | Farzad Farnoud | Quanquan Gu | Pan Xu | Tao Jin | Farzad Farnoud
[1] M. Kendall. Rank Correlation Methods , 1949 .
[2] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[3] Lirong Xia,et al. Learning Mixtures of Random Utility Models , 2018, AAAI.
[4] Farzad Farnoud,et al. HyDRA: gene prioritization via hybrid distance-score rank aggregation , 2015, Bioinform..
[5] Bruce E. Hajek,et al. Minimax-optimal Inference from Partial Rankings , 2014, NIPS.
[6] Thorsten Joachims,et al. Bayesian Ordinal Peer Grading , 2015, L@S.
[7] Chih-Jen Lin,et al. A Bayesian Approximation Method for Online Ranking , 2011, J. Mach. Learn. Res..
[8] Tingting Zhang,et al. Efficient Algorithm for Sparse Tensor-variate Gaussian Graphical Models via Gradient Descent , 2017, AISTATS.
[9] Prateek Jain,et al. Low-rank matrix completion using alternating minimization , 2012, STOC '13.
[10] John Guiver,et al. Bayesian inference for Plackett-Luce ranking models , 2009, ICML '09.
[11] Bassem A. Hassan,et al. Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.
[12] Jian Ma,et al. Covariate Adjusted Precision Matrix Estimation via Nonconvex Optimization , 2018, ICML.
[13] Jian Ma,et al. Speeding Up Latent Variable Gaussian Graphical Model Estimation via Nonconvex Optimization , 2017, NIPS.
[14] L. Thurstone. A law of comparative judgment. , 1994 .
[15] Martin J. Wainwright,et al. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..
[16] Thorsten Joachims,et al. Methods for ordinal peer grading , 2014, KDD.
[17] R. Luce,et al. Individual Choice Behavior: A Theoretical Analysis. , 1960 .
[18] Devavrat Shah,et al. Rank Centrality: Ranking from Pairwise Comparisons , 2012, Oper. Res..
[19] Yuxin Chen,et al. Spectral MLE: Top-K Rank Aggregation from Pairwise Comparisons , 2015, ICML.
[20] Devavrat Shah,et al. Iterative ranking from pair-wise comparisons , 2012, NIPS.
[21] R. A. Bradley,et al. Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .
[22] Nebojsa Jojic,et al. Efficient Ranking from Pairwise Comparisons , 2013, ICML.
[23] Moni Naor,et al. Rank aggregation methods for the Web , 2001, WWW '01.
[24] ChengXiang Zhai,et al. High-Dimensional Variance-Reduced Stochastic Gradient Expectation-Maximization Algorithm , 2017, ICML.
[25] M. Kendall,et al. Rank Correlation Methods , 1949 .
[26] Paul N. Bennett,et al. Pairwise ranking aggregation in a crowdsourced setting , 2013, WSDM.
[27] Zhaoran Wang,et al. High Dimensional EM Algorithm: Statistical Optimization and Asymptotic Normality , 2015, NIPS.
[28] Mark Braverman,et al. Noisy sorting without resampling , 2007, SODA '08.
[29] Philip L. H. Yu,et al. Bayesian analysis of order-statistics models for ranking data , 2000 .
[30] R. A. Bradley,et al. RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .
[31] E. Zermelo. Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .
[32] D. Hunter. MM algorithms for generalized Bradley-Terry models , 2003 .
[33] R. Duncan Luce,et al. Individual Choice Behavior: A Theoretical Analysis , 1979 .
[34] Milan Vojnovic,et al. Parameter Estimation for Generalized Thurstone Choice Models , 2016, ICML.
[35] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[36] Francesco Ricci,et al. Group recommendations with rank aggregation and collaborative filtering , 2010, RecSys '10.
[37] Martin J. Wainwright,et al. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions , 2011, ICML.
[38] Matthew Lease,et al. Learning to rank from a noisy crowd , 2011, SIGIR.
[39] Xiao Zhang,et al. A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery , 2018, AISTATS.