Quantum Mechanical Methods and the Interpretation and Prediction of Pericyclic Reaction Mechanisms

The computational study of pericyclic reactions, an important general class of organic reactions, now provides information about the transition structures of these processes with chemical accuracy, as judged by comparisons with experimental data, such as activation energies, substituent effects on rates, and kinetic isotope effects. This article introduces the methods used to study these reactions and describes how computational results have contributed to the understanding of transition states and mechanisms of the electrocyclic ring openings of cyclobutenes, Diels−Alder cycloaddition reactions, and [3,3]-sigmatropic shifts such as the Cope rearrangement.

[1]  K. Houk,et al.  Theoretical Secondary Kinetic Isotope Effects and the Interpretation of Transition State Geometries. 2. The Diels-Alder Reaction Transition State Geometry , 1994 .

[2]  M. Wolfsberg Theoretical evaluation of experimentally observed isotope effects , 1972 .

[3]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[4]  S. Peyerimhoff,et al.  Role of ring torsion in the electrocyclic transformation between cyclobutene and butadiene. Theoretical study , 1972 .

[5]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[6]  Kenneth M. Merz,et al.  Density functional transition states of organic and organometallic reactions , 1994 .

[7]  F. Westheimer The Magnitude of the Primary Kinetic Isotope Effect for Compounds of Hydrogen and Deuterium. , 1961 .

[8]  N. Harris A SYSTEMATIC THEORETICAL STUDY OF HARMONIC VIBRATIONAL FREQUENCIES AND DEUTERIUM ISOTOPE FRACTIONATION FACTORS FOR SMALL MOLECULES , 1995 .

[9]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[10]  A. Lera,et al.  TORQUOSELECTIVITY ON THE THERMAL ELECTROCYCLIC RING CLOSURE OF VINYLALLENES TO ALKYLIDENECYCLOBUTENES , 1995 .

[11]  H. Schaefer,et al.  Conrotatory and disrotatory stationary points for the electrocyclic isomerization of cyclobutene to cis-butadiene , 1984 .

[12]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[13]  Roland H. Hertwig,et al.  s‐Indacene: A Delocalized, Formally Antiaromatic 12 π Electron System , 1994 .

[14]  Kendall N. Houk,et al.  Electronic Control of Stereoselectivities of Electrocyclic Reactions of Cyclobutenes: A Triumph of Theory in the Prediction of Organic Reactions , 1996 .

[15]  M. Dewar,et al.  The Cope rearrangement. MINDO/3 studies of the rearrangements of 1,5-hexadiene and bicyclo[2.2.0]hexane , 1977 .

[16]  Roald Hoffmann,et al.  Stereochemistry of Electrocyclic Reactions (福井謙一とフロンティア軌導理論) -- (参考論文) , 1965 .

[17]  K. Morokuma,et al.  Chair and boat transition states for the Cope rearrangement. A CASSCF study , 1988 .

[18]  D. Spellmeyer,et al.  Prediction and experimental verification of the stereoselective electrocyclization of 3-formylcyclobutene , 1987 .

[19]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[20]  Caoxian Jie,et al.  Mechanism of the Cope rearrangement , 1987 .

[21]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[22]  K. Houk,et al.  DENSITY FUNCTIONAL THEORY ISOTOPE EFFECTS AND ACTIVATION ENERGIES FOR THE COPE AND CLAISEN REARRANGEMENTS , 1994 .

[23]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[24]  K. Houk,et al.  Secondary Kinetic Isotope Effects of Diastereotopic Protons in Pericyclic Reactions: A New Mechanistic Probe , 1995 .

[25]  Ernest R. Davidson,et al.  The Importance of Including Dynamic Electron Correlation in ab initio Calculations , 1996 .

[26]  M. Dewar,et al.  Alternative transition states in the Cope rearrangements of hexa-1,5-diene , 1987 .

[27]  Guntram Rauhut,et al.  Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields , 1995 .

[28]  K. Humski,et al.  THERMODYNAMIC AND KINETIC SECONDARY ISOTOPE EFFECTS IN THE COPE REARRANGEMENT. , 1970 .

[29]  S. Benson,et al.  Estimation of heats of formation of organic compounds by additivity methods , 1993 .

[30]  T. Kitagawa,et al.  A frustrated Cope rearrangement: thermal interconversion of 2,6-diphenylhepta-1,6-diene and 1,5-diphenylbicyclo[3.2.0]heptane , 1990 .

[31]  K. Houk,et al.  Diels-Alder dimerization of 1,3-butadiene: an ab initio CASSCF study of the concerted and stepwise mechanisms and butadiene-ethylene revisited , 1993 .

[32]  W. C. Lineberger,et al.  Transition-State Spectroscopy of Cyclooctatetraene , 1996, Science.

[33]  Kendall N. Houk,et al.  Transition structures of pericyclic reactions. Electron correlation and basis set effects on the transition structure and activation energy of the electrocyclization of cyclobutene to butadiene , 1988 .

[34]  L. J. Schaad,et al.  Diastereotopically distinct secondary deuterium kinetic isotope effects on the thermal isomerization of cis-hexatriene to 1,3-cyclohexadiene , 1988 .

[35]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[36]  Martin Head-Gordon,et al.  Quantum chemistry and molecular processes , 1996 .

[37]  J. Baker An algorithm for the location of transition states , 1986 .

[38]  M. J. Goldstein,et al.  Boat and chair transition states of 1,5-hexadiene , 1972 .

[39]  F. Daniels,et al.  Activation Energies and Entropies of Activation in the Rearrangement of Allyl Groups in Three Carbon Systems1 , 1947 .

[40]  Erich Wimmer,et al.  Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies , 1992 .

[41]  Ahmed H. Zewail,et al.  Direct Observation of the Transition State , 1995 .

[42]  Erwin Schrödinger,et al.  Quantisierung als Eigenwertproblem , 1925 .

[43]  Stephan L. Logunov,et al.  EXCITED-STATE DYNAMICS OF A PROTONATED RETINAL SCHIFF BASE IN SOLUTION , 1996 .

[44]  K. Morokuma,et al.  The Cope Rearrangement Revisited Again. Results of Ab Initio Calculations beyond the CASSCF Level , 1994 .

[45]  J. Bigeleisen,et al.  Calculation of Equilibrium Constants for Isotopic Exchange Reactions , 1947 .

[46]  M. Dewar,et al.  GROUND STATES OF MOLECULES. 49. MINDO/3 STUDY OF THE RETRO-DIELS-ALDER REACTION OF CYCLOHEXENE , 1978 .

[47]  R. C. Fahey,et al.  Kinetic Isotope Effects in the Acetolyses of Deuterated Cyclopentyl Tosylates1,2 , 1958 .

[48]  P. Schiess,et al.  Valenzisomerisierung von Cyclodeca‐1,5‐dien. Cyclodecapolyene, 2. Mitteilung , 1963 .

[49]  W. Saunders Calculations of isotope effects in elimination reactions: new experimental criteria for tunneling in slow proton transfers , 1985 .

[50]  J. Stewart,et al.  Mechanism of the Diels-Alder reaction: reactions of butadiene with ethylene and cyanoethylenes. , 1986, Journal of the American Chemical Society.

[51]  K. Houk,et al.  Evidence for the concerted mechanism of the Diels-Alder reaction of butadiene with ethylene. , 1986, Journal of the American Chemical Society.

[52]  L. Radom,et al.  Scaling Factors for Obtaining Fundamental Vibrational Frequencies and Zero-Point Energies from HF/6–31G* and MP2/6–31G* Harmonic Frequencies , 1993 .

[53]  K. Houk,et al.  Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels−Alder Reaction of Butadiene and Ethylene , 1996 .

[54]  Fernando Bernardi,et al.  Parametrization of a Heitler–London valence bond Hamiltonian from complete‐active‐space self‐consistent‐field computations: An application to chemical reactivity , 1988 .

[55]  Rodney J. Bartlett,et al.  A systematic comparison of molecular properties obtained using Hartree–Fock, a hybrid Hartree–Fock density‐functional‐theory, and coupled‐cluster methods , 1994 .

[56]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[57]  Jan K. Labanowski,et al.  Density Functional Methods in Chemistry , 1991 .

[58]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[59]  K. Houk,et al.  Synchronous or Asynchronous? An “Experimental” Transition State from a Direct Comparison of Experimental and Theoretical Kinetic Isotope Effects for a Diels−Alder Reaction , 1996 .

[60]  T. Ziegler,et al.  Combined Density Functional Theory and Intrinsic Reaction Coordinate Study on the Conrotatory Ring-Opening of Cyclobutene , 1995 .

[61]  Joseph J. Gajewski,et al.  Variable transition state structure in 3,3-sigmatropic shifts from .alpha.-secondary deuterium isotope effects , 1979 .

[62]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[63]  D. Spellmeyer,et al.  Electronic control of the stereoselectivities of electrocyclic reactions of cyclobutenes against incredible steric odds , 1988 .

[64]  K. Fukui Formulation of the reaction coordinate , 1970 .

[65]  Caoxian Jie,et al.  Mechanisms of Pericyclic Reactions: The Role of Quantitative Theory in the Study of Reaction Mechanisms , 1992 .

[66]  T. Tomioka,et al.  Thermal Decomposition of Cyclohexene , 1964 .

[67]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[68]  Kendall N. Houk,et al.  Theoretical secondary kinetic isotope effects and the interpretation of transition state geometries. 1. The Cope rearrangement , 1992 .

[69]  Kendall N. Houk,et al.  Theory of stereoselection in conrotatory electrocyclic reactions of substituted cyclobutenes , 1985 .

[70]  S. Scheiner,et al.  Improvement of polarized double-zeta basis sets for molecular interactions. Complexes of NH3, OH2, and FH with H+ and Li+ , 1984 .

[71]  Michel Dupuis,et al.  The Cope Rearrangement Revisited with Multireference Perturbation Theory , 1995 .

[72]  E. Davidson,et al.  The cope rearrangement revisited , 1991 .

[73]  M. Dewar,et al.  MINDO/3 study of the thermal conversion of cyclobutene to 1,3-butadiene , 1974 .

[74]  G. A. Petersson,et al.  A complete basis set model chemistry. III. The complete basis set‐quadratic configuration interaction family of methods , 1991 .

[75]  A. Zewail,et al.  The Validity of the "Diradical" Hypothesis: Direct Femtoscond Studies of the Transition-State Structures , 1994, Science.

[76]  W. Roth,et al.  Verbotene Reaktionen. — [2 + 2]-Cycloreversion starrer Cyclobutane , 1988 .

[77]  M. Dewar,et al.  Cope rearrangement of 3,3-dicyanohexa-1,5-diene , 1989 .

[78]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[79]  Kazuhiro Ishida,et al.  The intrinsic reaction coordinate. An ab initio calculation for HNC→HCN and H−+CH4→CH4+H− , 1977 .

[80]  D. Heidrich,et al.  Properties of Chemically Interesting Potential Energy Surfaces , 1991 .

[81]  B. Roos,et al.  Lecture notes in quantum chemistry , 1992 .

[82]  Vincenzo Barone,et al.  Study of prototypical Diels-Alder reactions by a hybrid density functional/Hartree-Fock approach , 1996 .

[83]  J. Baker,et al.  A study of some organic reactions using density functional theory , 1995 .

[84]  Krishnan Raghavachari,et al.  Electron Correlation Effects in Molecules , 1996 .

[85]  J. I. Brauman,et al.  Energies of alternate electrocyclic pathways. Pyrolysis of cis-3,4-dimethylcyclobutene , 1972 .

[86]  L. J. Schaad,et al.  Diastereotopically distinct secondary deuterium kinetic isotope effects on the thermal isomerization of cyclobutene to butadiene , 1988 .

[87]  H. Schlegel,et al.  Optimization of equilibrium geometries and transition structures , 1982 .

[88]  K. Morokuma,et al.  Ab initio calculation of the effects of cyano substituents on the Cope rearrangement , 1990 .

[89]  P. Schleyer,et al.  The Cope Rearrangement Transition Structure Is Not Diradicaloid, but Is It Aromatic? , 1995 .

[90]  Transition Structures of Hydrocarbon Pericyclic Reactions , 1992 .