A Dynamic Subspace Method for Hyperspectral Image Classification

Many studies have demonstrated that multiple classifier systems, such as the random subspace method (RSM), obtain more outstanding and robust results than a single classifier on extensive pattern recognition issues. In this paper, we propose a novel subspace selection mechanism, named the dynamic subspace method (DSM), to improve RSM on automatically determining dimensionality and selecting component dimensions for diverse subspaces. Two importance distributions are proposed to impose on the process of constructing ensemble classifiers. One is the distribution of subspace dimensionality, and the other is the distribution of band weights. Based on the two distributions, DSM becomes an automatic, dynamic, and adaptive ensemble. The real data experimental results show that the proposed DSM obtains sound performances than RSM, and that the classification maps remarkably produce fewer speckles.

[1]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[2]  John A. Richards,et al.  Managing the Spectral-Spatial Mix in Context Classification Using Markov Random Fields , 2008, IEEE Geoscience and Remote Sensing Letters.

[3]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[4]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[5]  Lorenzo Bruzzone,et al.  A Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Tin Kam Ho,et al.  Nearest Neighbors in Random Subspaces , 1998, SSPR/SPR.

[7]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[8]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[9]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[10]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Giorgio Valentini,et al.  Feature Selection Combined with Random Subspace Ensemble for Gene Expression Based Diagnosis of Malignancies , 2004, WIRN.

[12]  Bor-Chen Kuo,et al.  Hyperspectral data classification using classifier overproduction and fusion strategies , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Robert P. W. Duin,et al.  Bagging, Boosting and the Random Subspace Method for Linear Classifiers , 2002, Pattern Analysis & Applications.

[14]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[15]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[16]  K. N. Toosi,et al.  Application of Feature Selection and Classifier Ensembles for the Classification of Hyperspectral Data , 2005 .

[17]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[18]  Bor-Chen Kuo,et al.  Kernel Nonparametric Weighted Feature Extraction for Hyperspectral Image Classification , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Joydeep Ghosh,et al.  Investigation of the random forest framework for classification of hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Qiong Jackson,et al.  Adaptive Bayesian contextual classification based on Markov random fields , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[22]  Bor-Chen Kuo,et al.  Fuzzy Fusion Method for Combining Small Number of Classifiers in Hyperspectral Image Classification , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[23]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[24]  David A. Landgrebe,et al.  Covariance Matrix Estimation and Classification With Limited Training Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[26]  Giorgio Valentini,et al.  Bio-molecular cancer prediction with random subspace ensembles of support vector machines , 2005, Neurocomputing.

[27]  Bor-Chen Kuo,et al.  Hyperspectral Image Classification Using Kernel-based Nonparametric Weighted Feature Extraction , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[28]  T. Subba Rao,et al.  Classification, Parameter Estimation and State Estimation: An Engineering Approach Using MATLAB , 2004 .

[29]  Bor-Chen Kuo,et al.  Feature Extractions for Small Sample Size Classification Problem , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  David A. Landgrebe,et al.  Signal Theory Methods in Multispectral Remote Sensing , 2003 .

[31]  Robert P. W. Duin,et al.  Bagging and the Random Subspace Method for Redundant Feature Spaces , 2001, Multiple Classifier Systems.

[32]  Emmanuel Arzuaga-Cruz,et al.  Integration of spatial and spectral information by means of unsupervised extraction and classification for homogenous objects applied to multispectral and hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Lorenzo Bruzzone,et al.  A context-sensitive Bayesian technique for the partially supervised classification of multitemporal images , 2005, IEEE Geoscience and Remote Sensing Letters.

[34]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Stephen D. Bay Nearest neighbor classification from multiple feature subsets , 1999, Intell. Data Anal..

[36]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[37]  Christopher J. Willis,et al.  Hyperspectral image classification with limited training data samples using feature subspaces , 2004, SPIE Defense + Commercial Sensing.

[38]  Shiliang Sun,et al.  An experimental evaluation of ensemble methods for EEG signal classification , 2007, Pattern Recognit. Lett..

[39]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[40]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[41]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[42]  Philip H. Swain,et al.  Bayesian contextual classification based on modified M-estimates and Markov random fields , 1996, IEEE Trans. Geosci. Remote. Sens..