Cleavage furrow-directed cortical flows bias PAR polarization pathways to link cell polarity to cell division

[1]  J. Feldman,et al.  Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. , 2023, Developmental cell.

[2]  Lesilee S. Rose,et al.  Multiple pathways for reestablishing PAR polarity in C. elegans embryo , 2022, bioRxiv.

[3]  R. G. Endres,et al.  Design principles for selective polarization of PAR proteins by cortical flows , 2022, bioRxiv.

[4]  M. Zernicka-Goetz,et al.  E‐cadherin mediates apical membrane initiation site localisation during de novo polarisation of epithelial cavities , 2022, The EMBO journal.

[5]  N. Goehring,et al.  An analog sensitive allele permits rapid and reversible chemical inhibition of PKC-3 activity in C. elegans , 2022, microPublication biology.

[6]  M. Glotzer,et al.  Aurora A and cortical flows promote polarization and cytokinesis by inducing asymmetric ECT-2 accumulation , 2022, bioRxiv.

[7]  D. St Johnston,et al.  Apical–basal polarity and the control of epithelial form and function , 2022, Nature Reviews Molecular Cell Biology.

[8]  N. Goehring,et al.  SAIBR: a simple, platform-independent method for spectral autofluorescence correction , 2022, bioRxiv.

[9]  T. Shibata,et al.  A balance between antagonizing PAR proteins specifies the pattern of asymmetric and symmetric divisions in C. elegans embryogenesis. , 2021, Cell reports.

[10]  D. Dickinson,et al.  A particle size threshold governs diffusion and segregation of PAR-3 during cell polarization , 2021, bioRxiv.

[11]  J. Clarke,et al.  Coordinated assembly and release of adhesions builds apical junctional belts during de novo polarisation of an epithelial tube , 2020, Development.

[12]  S. Grill,et al.  Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development , 2020, eLife.

[13]  Hay-Oak Park,et al.  Regulation of Cdc42 for polarized growth in budding yeast , 2020, Microbial Cell.

[14]  Nicholas S. Reilly,et al.  Cytokinetic bridge triggers de novo lumen formation in vivo , 2020, Nature Communications.

[15]  Lars Hubatsch,et al.  A cell size threshold limits cell polarity and asymmetric division potential , 2019, Nature Physics.

[16]  Lars Hubatsch,et al.  Regulated Activation of the PAR Polarity Network Ensures a Timely and Specific Response to Spatial Cues , 2019, Current Biology.

[17]  P. Gönczy,et al.  Aurora A depletion reveals centrosome-independent polarization mechanism in Caenorhabditis elegans , 2019, eLife.

[18]  F. Jülicher,et al.  Guiding self-organized pattern formation in cell polarity establishment , 2018, Nature Physics.

[19]  B. Bowerman,et al.  Combinatorial Contact Cues Specify Cell Division Orientation by Directing Cortical Myosin Flows. , 2018, Developmental cell.

[20]  Linda Z. Shi,et al.  A positive-feedback-based mechanism for constriction rate acceleration during cytokinesis in Caenorhabditis elegans , 2018, eLife.

[21]  Axel Voigt,et al.  Non-invasive perturbations of intracellular flow reveal physical principles of cell organization , 2018, Nature Cell Biology.

[22]  J. Ahringer,et al.  aPKC Cycles between Functionally Distinct PAR Protein Assemblies to Drive Cell Polarity , 2017, Developmental cell.

[23]  M. Gotta,et al.  A Single-Cell Biochemistry Approach Reveals PAR Complex Dynamics during Cell Polarization. , 2017, Developmental cell.

[24]  A. Gavin,et al.  PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position , 2016, Journal of Cell Science.

[25]  Tetsuya J. Kobayashi,et al.  Cortical Polarity of the RING Protein PAR-2 Is Maintained by Exchange Rate Kinetics at the Cortical-Cytoplasmic Boundary. , 2016, Cell reports.

[26]  E. Munro,et al.  Dynamic Opposition of Clustered Proteins Stabilizes Cortical Polarity in the C. elegans Zygote. , 2015, Developmental cell.

[27]  Lesilee S. Rose,et al.  Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. , 2014, WormBook : the online review of C. elegans biology.

[28]  A. Andres-Pons,et al.  A Memory System of Negative Polarity Cues Prevents Replicative Aging , 2014, Cell.

[29]  William Thielicke,et al.  PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB , 2014 .

[30]  Joshua A. Arribere,et al.  Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in Caenorhabditis elegans , 2014, Genetics.

[31]  E. Bi,et al.  Cytokinesis defines a spatial landmark for hepatocyte polarization and apical lumen formation , 2014, Journal of Cell Science.

[32]  B. Margolis,et al.  FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis , 2014, EMBO reports.

[33]  Brian S. Clark,et al.  Mirror‐symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod , 2012, The EMBO journal.

[34]  Ahna R. Skop,et al.  Anterior PAR proteins function during cytokinesis and maintain DYN‐1 at the cleavage furrow in Caenorhabditis elegans , 2012, Cytoskeleton.

[35]  A. Cardona,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[36]  S. Munck,et al.  Cytokinesis remnants define first neuronal asymmetry in vivo , 2011, Nature Neuroscience.

[37]  A. Hyman,et al.  Polarization of PAR Proteins by Advective Triggering of a Pattern-Forming System , 2011, Science.

[38]  Erik E. Griffin,et al.  Microtubules induce self-organization of polarized PAR domains in C. elegans zygotes , 2011, Nature Cell Biology.

[39]  A. Hyman,et al.  PAR proteins diffuse freely across the anterior–posterior boundary in polarized C. elegans embryos , 2011, The Journal of cell biology.

[40]  D. Morton,et al.  The C. elegans homolog of Drosophila Lethal giant larvae functions redundantly with PAR-2 to maintain polarity in the early embryo , 2010, Development.

[41]  U. Tepass,et al.  Cdc42 and Vesicle Trafficking in Polarized Cells , 2010, Traffic.

[42]  Jen-Yi Lee,et al.  Extracellular control of PAR protein localization during asymmetric cell division in the C. elegans embryo , 2010, Development.

[43]  A. Hyman,et al.  LGL Can Partition the Cortex of One-Cell Caenorhabditis elegans Embryos into Two Domains , 2010, Current Biology.

[44]  C. Mello,et al.  NMY-2 maintains cellular asymmetry and cell boundaries, and promotes a SRC-dependent asymmetric cell division. , 2010, Developmental biology.

[45]  K. Eliceiri,et al.  CGEF-1 and CHIN-1 Regulate CDC-42 Activity during Asymmetric Division in the Caenorhabditis elegans Embryo , 2009, Molecular biology of the cell.

[46]  Jay N. Pieczynski,et al.  Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. , 2009, Molecular biology of the cell.

[47]  M. Foss,et al.  Redundant Mechanisms Recruit Actin into the Contractile Ring in Silkworm Spermatocytes , 2008, PLoS biology.

[48]  Dorian C. Anderson,et al.  Polarization of the C. elegans Embryo by RhoGAP-Mediated Exclusion of PAR-6 from Cell Contacts , 2008, Science.

[49]  I. Macara,et al.  The PAR proteins: fundamental players in animal cell polarization. , 2007, Developmental cell.

[50]  Claudio Araya,et al.  A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis , 2007, Nature.

[51]  A. Hyman,et al.  CDC-42 and RHO-1 coordinate acto-myosin contractility and PAR protein localization during polarity establishment in C. elegans embryos , 2006, Development.

[52]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[53]  G. Seydoux,et al.  Stabilization of cell polarity by the C. elegans RING protein PAR-2. , 2006, Developmental cell.

[54]  Anthony A Hyman,et al.  Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. , 2004, Annual review of cell and developmental biology.

[55]  J. Priess,et al.  Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. , 2004, Developmental cell.

[56]  S. Etienne-Manneville,et al.  Cdc42 - the centre of polarity , 2004, Journal of Cell Science.

[57]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[58]  A. Schetter,et al.  Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases , 2003, Development.

[59]  S. Yumura Myosin II dynamics and cortical flow during contractile ring formation in Dictyostelium cells , 2001, The Journal of cell biology.

[60]  J. Ahringer,et al.  CDC-42 controls early cell polarity and spindle orientation in C. elegans , 2001, Current Biology.

[61]  F. Piano,et al.  Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. , 1998, Development.

[62]  K. Kemphues,et al.  PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. , 1996, Development.

[63]  K. Kemphues,et al.  par-6, a gene involved in the establishment of asymmetry in early C. elegans embryos, mediates the asymmetric localization of PAR-3. , 1996, Development.

[64]  K. Kemphues,et al.  Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos , 1995, Cell.

[65]  K. Kemphues,et al.  par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed , 1995, Cell.

[66]  Y. Wang,et al.  Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments , 1990, The Journal of cell biology.

[67]  J. White,et al.  Cortical flow in animal cells. , 1988, Science.

[68]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[69]  B. Goldstein,et al.  Culture and manipulation of embryonic cells. , 2012, Methods in cell biology.

[70]  Kim Jacobsen,et al.  The embryonic cell lineage of the nematode Rhabditophanes sp. , 2008, The International journal of developmental biology.