Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators
暂无分享,去创建一个
Philipp Öffner | Hendrik Ranocha | Thomas Sonar | Jan Glaubitz | T. Sonar | Hendrik Ranocha | J. Glaubitz | P. Öffner
[1] Hendrik Ranocha,et al. Enhancing stability of correction procedure via reconstruction using summation-by-parts operators I: Artificial dissipation , 2016 .
[2] Gregor Gassner,et al. A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..
[3] Magnus Svärd,et al. Stable and Accurate Artificial Dissipation , 2004, J. Sci. Comput..
[4] Philipp Öffner,et al. Extended skew-symmetric form for summation-by-parts operators and varying Jacobians , 2017, J. Comput. Phys..
[5] Freddie D. Witherden,et al. An extended range of stable-symmetric-conservative Flux Reconstruction correction functions , 2015 .
[6] T. Sonar,et al. Enhancing stability of correction procedure via reconstruction using summation-by-parts operators II: Modal filtering , 2016, 1606.01056.
[7] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[8] Jan Nordström,et al. Conservative Finite Difference Formulations, Variable Coefficients, Energy Estimates and Artificial Dissipation , 2006, J. Sci. Comput..
[9] E. Tadmor,et al. Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .
[10] H. T. Huynh,et al. A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .
[11] Heping Ma,et al. Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws , 1998 .
[12] Philipp Öffner,et al. Summation-by-parts operators for correction procedure via reconstruction , 2015, J. Comput. Phys..