Darboux transformation and conservation laws for an inhomogeneous fifth-order nonlinear Schrödinger equation from the Heisenberg ferromagnetism

Abstract In this paper, we consider an inhomogeneous fifth-order nonlinear Schrodinger equation with variable coefficients, which describes the dynamics of a site-dependent Heisenberg ferromagnetic spin chain. Darboux transformation is constructed, and one- and two-soliton solutions are represented. In virtue of the Lax pair, we give an infinite number of conservation laws. Furthermore, we graphically analyze the influence of perturbation terms and inhomogeneous parameters on the soliton propagation and interactions. The perturbation terms are found to induce a phase shift of the soliton but do not affect the soliton amplitude. The inhomogeneous parameters lead to an increasing–decreasing process of soliton amplitude and the change of the propagation direction. Perturbation terms and inhomogeneous parameters also affect the soliton interactions.

[1]  Mehdi Dehghan,et al.  The use of compact boundary value method for the solution of two-dimensional Schrödinger equation , 2009 .

[2]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[3]  Ricardo Carretero-González,et al.  Emergent nonlinear phenomena in Bose-Einstein condensates : theory and experiment , 2008 .

[4]  Bo Tian,et al.  Conservation laws, soliton solutions and modulational instability for the higher-order dispersive nonlinear Schrödinger equation , 2009 .

[5]  Mehdi Dehghan,et al.  A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions , 2007, Comput. Math. Appl..

[6]  Huang,et al.  Soliton excitations in the alternating ferromagnetic Heisenberg chain. , 1991, Physical review. B, Condensed matter.

[7]  Yi-Tian Gao,et al.  Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching , 2013 .

[8]  Yi-Tian Gao,et al.  Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system , 2014 .

[9]  Yi-Tian Gao,et al.  Multi-Soliton and Rogue-Wave Solutions of the Higher-Order Hirota System for an Erbium-Doped Nonlinear Fiber , 2014 .

[10]  Mehdi Dehghan,et al.  Numerical solution to the unsteady two‐dimensional Schrödinger equation using meshless local boundary integral equation method , 2008 .

[11]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[12]  D. Lynch,et al.  Optical and magneto-optical properties and electronic structures of single-crystalline RAl2 (R=Y, La, Ce, Pr, and Lu) , 2000 .

[13]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[14]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[15]  K. Lonngren Soliton experiments in plasmas , 1983 .

[16]  Bo Tian,et al.  Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics , 2012 .

[17]  G. R. Luckhurst,et al.  Director alignment by crossed electric and magnetic fields: a deuterium NMR study. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Tao Xu,et al.  Symbolic-computation construction of transformations for a more generalized nonlinear Schrödinger equation with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates , 2007 .

[19]  Ameneh Taleei,et al.  A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients , 2010, Comput. Phys. Commun..

[20]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[21]  L. Kavitha,et al.  Integrability and soliton in a classical one-dimensional site-dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity , 2003 .

[22]  G. Lamb,et al.  Solitons and the Motion of Helical Curves , 1976 .

[23]  Ameneh Taleei,et al.  A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations , 2011, Comput. Phys. Commun..

[24]  Mehdi Dehghan,et al.  The Sinc-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrödinger equation with nonhomogeneous boundary conditions , 2013 .

[25]  G. Morfill,et al.  Observation of particle pairing in a two-dimensional plasma crystal. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[27]  Mehdi Dehghan,et al.  The meshless local Petrov–Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation , 2008 .

[28]  H. Miao,et al.  High-sensitivity three-mode optomechanical transducer , 2011 .

[29]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[30]  Yi Qin,et al.  Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation , 2014, Appl. Math. Comput..

[32]  L. Kavitha,et al.  ENERGY-MOMENTUM TRANSPORT THROUGH SOLITON IN A SITE-DEPENDENT FERROMAGNET , 2011 .

[33]  A. G. Antipov,et al.  The isotropic Heisenberg chain of arbitrary spin by direct solution of the Baxter equation , 2006 .

[34]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[35]  Huang,et al.  Solitonlike excitations in a spin chain with a biquadratic anisotropic exchange interaction. , 1990, Physical review. B, Condensed matter.

[36]  L. Kavitha,et al.  SOLITON SPIN EXCITATIONS IN AN ANISOTROPIC HEISENBERG FERROMAGNET WITH OCTUPOLE-DIPOLE INTERACTION , 1999 .