On feasible sets for MPC and their approximations

In this paper we are interested in the computation of feasible sets for linear model predictive control techniques, based on set relations and not on the conventional orthogonal projection. Further, the problem of computing suitable inner approximations of the feasible sets is considered. Such approximations are characterized by simpler polytopic representations, and preserve essential properties as convexity, positive invariance, inclusion of the set of expected initial states.

[1]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[2]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[3]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[4]  Peter Gritzmann,et al.  Polytope Projection and Projection Polytopes , 1996, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[5]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[6]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[7]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[8]  Peter Gritzmann,et al.  On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[9]  Mario A. López,et al.  Linear time approximation of 3D convex polytopes , 2002, Comput. Geom..

[10]  Morten Hovd,et al.  Approximate explicit linear MPC via Delaunay tessellation , 2009, 2009 European Control Conference (ECC).

[11]  Shlomo Reisner,et al.  Dropping a vertex or a facet from a convex polytope , 2001 .

[12]  Ilya Kolmanovsky,et al.  Maximal output admissible sets for discrete-time systems with disturbance inputs , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[13]  Dennis S. Bernstein,et al.  Naive control of the double integrator , 2001 .

[14]  F. Blanchini Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov functions , 1994, IEEE Trans. Autom. Control..

[15]  E. Bronstein Approximation of convex sets by polytopes , 2008 .

[16]  D. Dumur,et al.  On the continuity and complexity of control laws based on multiparametric linear programs , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[17]  J. Maciejowski,et al.  On Polyhedral Projection and Parametric Programming , 2008 .

[18]  Peter Gritzmann,et al.  Minkowski Addition of Polytopes: Computational Complexity and Applications to Gröbner Basis , 1993, SIAM J. Discret. Math..

[19]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[20]  J. Maciejowski,et al.  Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .

[21]  J. Maciejowski,et al.  Invariant sets for constrained nonlinear discrete-time systems with application to feasibility in model predictive control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[22]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[23]  Tor Arne Johansen,et al.  Continuous Selection and Unique Polyhedral Representation of Solutions to Convex Parametric Quadratic Programs , 2007 .